
Bus / Crossbar Switch

AMANO, Hideharu

hunga@am．ics．keio．ac．jp

Today, I am talking about the basic knowledge on buses and crossbar switches

used in UMA or multi-core.

1

CPU

L1 Cache

L2 Cache

L3 Cache

SRAM

Main memory

DRAM

～64KB 1-2clock

～256KB 3-10clock

2M～4MB 10-20clock

4～16GB 50-100clock

Memory Hierarchy

Locality is used.

Small high speed

Large low speed

Secondary Memory

μ-msec

TB

On-Chip cache

Transparent from Software

Managed by

Operating

System

First of all, let’s review on the memory hierarch. It makes the use of special

and temporal locality of memory access. That is, a high speed but small

memory is located near the CPU. L1 or level 1 cache is directly connected to

the CPU, and L2 cache is located on the same chip. L3 cache is an on-board

cache but recently it is also embedded in the same chip. These cache memory

modules are all implemented with SRAM or static ram. The main memory is

implemented with the dynamic RAM. From the main memory, all memory

modules are transparent, that is, they have to be controlled by the hardware.

The secondary memory is managed by the operating system. It has been built

with magnetic disk, but recently, flush memory has taken place rapidly.

2

Uni-processor structure

CPU

North

Bridge

South

Bridge

Graphics DRAM

USB

Ether

Legacy I/O

PCI/PCIexpress

Memory Controller HUB

I/O Controller HUB

L1

L2

L3

The memory hierarchy is implemented with two types of bus or switch: North

bridge and south bridge. They are Intel’s terminorogy. North bridge is a switch

for high speed devices such as DRAMs and graphics processing unit. On the

other hand south bridge is a bridge to I/O devices, USB, Ethernet and other

legacy I/Os. PCIe bus is also connected.

3

Sharing cache introduces congestion

PE

North

Bridge

South

Bridge

Graphics DRAM

USB

Ether

Legacy I/O

PCI/PCIexpress

Memory Controller HUB

I/O Controller HUB

L1

L2

L3

PEPE PE

OK. What happens when a multicore is used instead of the uniprocessor? The

simplest idea is to share the L1 cache. But, it is impossible because of the

severe access contention at the L1 cache, since the L1 cache is very tightly

connected to the processing element.

4

The typical multicore structure

PE

North

Bridge

South

Bridge

Graphics DRAM

USB

Ether

Legacy I/O

PCI/PCIexpress

Memory Controller HUB

I/O Controller HUB

L1

L3

PE PE PE

L1

L2

L1 L1

Snoop CacheBus

Crossbar

So, how about providing the private cache as the L1 cache and sharing the L2

cache. It is possible just if the cache coherence problem is solved. I will talk

about this problem in the next lesson, and skip it today. Anyway, note that the

bus is used to connect cores and the L2 cache. Of course, this bus is not a

traditional passive bus.

5

Implementation of buses

Multiplexer

Passive Bus：
Board level
implementation

Active Bus:
Chip level
implementation

A single module sends data to all other modules

In old days, the bus is implemented with just wires pulled up registers for

termination. This style of bus is still used for the back-plane bus of desktop

computers. Various types of components can be connected but the operational

speed tends to be slow.

Instead, buses in the chip is implemented with active gates. For example, a

multiplexer is used in this case, it selects one of inputs data and distributes to

all components. The definition of the bus is that anyone of the connected

modules can send its data to all other members. This is sometimes called a

multi-drop bus. In computers, only multi-drop buses are used.

6

Requirements

◼ High Performance

❑ Bandwidth（Throughput）

❑ Latency

◼ Flexibility（Universality)

❑ The number of modules

❑ Clock frequency

❑ Electrical characteristics

Dedicated Bus

Standard Bus

There are inconsistent requirements to bus. First is high performance. The

bandwidth or throughput indicates the total amount of data to be transferred in

a cycle. The latency means the time from the sender starting data to the

receiver receiving them. The high speed bus is needed to have a large

bandwidth and short latency.

On the other hand, flexibility or universality is also required. That is, a bus is

needed to connect a certain number of modules which use various clock

frequency and electrical characteristics. Since it is difficult to satisfy both, we

provide two types of buses: dedicated bus and standard bus in a system.

7

System bus vs. I/O bus

System Bus

(Dedicated)

I/O Bus

(Standard)

Most of multicore system uses a dedicated system bus to connect cache system

and high speed accelerators. Also it provides standard I/O bus through the

bridge chip. North-and-South bridge structure which was introduced before is

one of this example.

8

Synchronous vs. Asynchronous

◼ Synchronous bus

❑ Data is sent synchronized with a clock

◼ Easy to handshake, block (continuous) data transfer

◼ Module numbers/types are limited

❑ PCI、Mbus、PCIx、PCI express, On chip buses

❑ Performance centric

◼ Asynchronous bus

❑ Data is sent without a system clock

◼ Variable modules can be connected

❑ VME、Futurebus+

Recently, asynchronous buses are not commonly used

Buses are sometimes classified into two categories: synchronous or

asynchronous. In synchronous buses, data are sent synchronized with a clock.

This bus can support a high speed block data transfer but modules numbers

and/or types are limited. They must follow the fixed bus clock. On the

contrary, in asynchronous buses, there is no system clock, and so every data

transfer requires a handshake. However, this classification is rather old-

fashioned. Recent buses are all synchronous bus, and asynchronous buses

seem to be extencted.

9

Terms around bus

◼ Transaction: A continuous data transfer of

address and data

◼ Arbitration：An operation for taking a right to

control the bus

◼ Bus Master: a module which had a right of

controlling the bus through the arbitration

◼ Bus Slave：modules except the bus master

Now, let me explain some terms around bus.

10

A sequence of data transfer with the bus

◼ Get the mastership with the arbitration

◼ Bus Transaction

❑ Address transfer

❑ Data transfer (repeated if necessary)

❑ End of transaction

◼ Release the mastership

Arbiter hardware

Handshake

When you want to use a bus, first, you have to get the mastership with the

arbitration. Then, you start the bus transaction. Usually, address and data are

multiplexed, so first, address is transferred. At that time, handshake is needed

between the master and slaves. Then, data transfer starts. Multiple data are

often transferred iteratively synchronized with a clock in the synchronous bus.

At the end of transaction, sometimes, data for error detecting or correction

code are transferred. Then, the master releases the mastership, and the next

transaction starts by another master.

11

Arbiter

．．

Priority Encoder

Arbiter

Centralized

H

Distributed bus

Daisy Chain

Distributed

Centralized arbiter is used inside the chip

Arbiter is classified into centralized and distributed. The simplest centralized

arbiter is a priority encoder. It selects a winner from multiple competitors. For

multicores, since every module is embedded into a chip, the centralized arbiter

is used.

12

From

CMOS VLSI Design

by Weste and Harris

Centralized

Arbiter

=

Priority

Encoder

Tree

There are various types of priority encoders. They somehow, resemble to

adders. The simplest one uses the ripple carry structure. Like the adder, it has

the problem of long delay time. So, look ahead, incremented, and Skransky

methods have been proposed to reduce the delay. Of course, they need extra

hardware.

13

Daisy Chain

If no request EI→EO

The request can be issued only if EI is H level

When the request is issued, EO becomes L level

EI EO EI EO EI EO EI EO EI EO
H H H H H

Request

L L

Request
X

Right side module has a low priority

Request

Left side module has a high priority

L L

X

Daisy chain is the simplest arbiter. The modules are connected tandemly with

the signals EI and EO. The rule is simple, if there is no requests, the module

transfers the level of EI to EO. The request can be issued only if EI is High

level, and negates EO. All the following modules’ EI turns Low, thus they

cannot issue the request. Obviously, the leftmost module as the highest

priority. Since this method is easy to implement, it is often used for an arbiter

Direct Memory Access or DMA requests.

14

Open Drain bus

‘H’

‘H’

O

F

F

O

F

F

O

F

F

O

F

F

If all inputs are ‘H’, the bus becomes ‘H’.

‘H’ ‘H’ ‘H’

‘H’

‘H’

O

F

F

O

F

F

O

F

F

O

F

F

If at least an input becomes ‘L’,

the bus becomes ‘L’ .

‘H’ ‘H’ ‘H’

O

N

‘L’

‘L’‘L’

O

N

If multiple inputs become ‘L’

it still remains ‘L’,

Wired-OR(AND Tie)

The traditional backplane bus uses the open drain gate. In such a gate, the

drain of output transistor is opened and connected together.

The high level is supplied through the termination resisters. In this case, if all

transistors are off, the bus wire becomes high because it is pulled up by

resisters.

If at least an input becomes low, the transistor turns on, and the level becomes

low. The case of two or more transistors are ON, the same thing happens.

Since at least an input becomes low, the wire is low. Thus, this mechanism is

sometimes called Wired-OR. Some people call it AND Tie.

15

Distributed bus arbiter

０ １ ２ ３ ４ ５ ６ ７

０
０
１

０
１
１

１
１
０

０ １ ２ ３ ４ ５ ６ ７

０
０
１

０
１
１

１
１
０

Check from the upper line.

If the value on the line is

not equal to its output

number, then stop the

output.

Open Drain：
0 overtakes 1

Output its own

number

By using open drain buses, a log2N distributed bus arbiter can be built. We

need log2N buses for N modules. Here, there are 8 modules, so three wires are

needed. Each module sends its own binary number to the bus. Here, assume

that module 1, 3, and 6 issue the request.

Then, the bus is checked from the highest digit. If the level is not the same as

its own level, it removes its request from all wires. In this case, the module six

withdraws since it receives 0 instead of its issued 1. Then, the second wire is

checked. This time 3 withdraws. Finally the module 1 wins.

16

Modified method（Keio’s patent）

０ １ ２ ３ ４ ５ ６ ７

０
０
１

０
１
１

１
１
０

Output its own

number

ＸＸＸ
Ｘ

０ １ ２ ３ ４ ５ ６ ７

０
１
１

１
１
０

Parallel check is

possible

Ｘ
ＸＸＸ

０
０
１

Set cut-points on the bus

The problem of the distributed arbiter is it takes Log2N clocks to fix the result.

Keio university invented the improved the method. The key of magic is to cut

the wire and divides it into 4 segments and 2 segments like this.

Then the same algorithm is applied, but this time the winner can be selected

just with a clock cycle, since 0 is not propagated beyond the cut. I think it is a

good idea, and Keio University got a patent. Unfortunately, no one was

interested in this idea and this patent was expired without getting any money.

17

Starvation Problem

◼ If the priority of the arbiter is fixed, a weak

module cannot use the bus continuously.

◼ Central arbiter

→ Round robin priority scheduling

◼ Distributed arbiter

→ The next request cannot be issued until all

requesting modules satisfy their requests.

If the priority level of the arbiter is fixed, the starvation problem may happen.

That is, a weak module cannot use the bus continuously. For the central arbiter,

the round robin priority scheduling can be implemented. That is the priority

level is shifted between modules. For the distributed arbiter, it is hard to be

implemented. In this case pheudo round robin method is used.

18

Round Robin

Priority 000 001 010 011 100 101 110 111

000
001 010 011 100 101 110 111

000 001
010 011 100 101 110 111

000 001 010
011 100 101 110 111

This diagram shows the round robin priority scheduling. After an arbitration is

finished, the priority shifts so that the fairness of the bus is kept.

19

Practical Starvation Avoidance

Priority 000 001 010 011 100 101 110 111

Assume that 0 is the strongest.

Blocked

Blocked

Blocked

Blocked

All Blocked modules are released

Since the round robin scheduling takes cost, a simpler policy is often used. The

rule is simple, a module who won the arbitration cannot issue the next request

until there is no requesting module. This diagram shows an example.

20

Overlap between the arbitration and data

transfer

Arbitration

Data transfer

n

n-1

bus master for

n-th transaction

n

n+1

n+1

bus master for

n+1-th transaction

n+2

n+1

bus master for

n+2-th transaction

n+3

So, the arbitration time is not critical in most cases.

The bus arbitration is usually done overlapped with bus transaction itself.

Thus, during a transaction, the next bus master is selected, and the time of bus

arbitration is hidden. This is why the speed of arbiter is sometimes not treated

as a critical matter.

21

glossary-1

◼ Arbiter 調停回路
◼ Arbitration 調停操作、バスマスタを選ぶ
◼ Bus master バスマスタ、バスの利用権を管理するモジュール
◼ Bus slave バススレーブ、バスの利用権を持たないモジュール（マス
タからスレーブに常にデータを転送するわけではないので注意！）

◼ Centralized 集中型 ⇔ Distributed 分散型
◼ Daisy Chain Arbiterの一方法で、ヒナゲシの花輪から来ている
◼ Transaction バス上でデータを転送するための一連の操作
◼ Open drain オープンドレイン、バスの作り方の一つで、出力トランジ
スタをオープンにして抵抗につなぐ。全てがOFFのときのみHレベル
になり、どれか一つでもONになるとLレベルになる。この操作をワイ
ヤードORと呼ぶ。

◼ Starvation 飢餓状態、バスの利用権を獲得できない状態が長期間
続くこと

◼ Round-robin ラウンドロビン、優先順位をArbitration毎に隣りのモ
ジュールに移動していく方法

22

Handshake for data transfer

2-edge

2-line (Strobe + 1 Acknowledge)

4-edge

Only for a single slave

2-edge

3-line (Strobe + 2-Acknowledge)

4-edge

For multiple slaves

Now, let me explain about the handshake mechanism. For a bus with a single

slave, 2-line handshake is enough. If it transfers data with four edges, it is

called 4-edge handshake, and with 2 edges, it is called 2-edge handshake. For

multiple slaves we need three lines.

23

２-line ４-edge handshake

Strobe

Address/

Data

Acknowledge

This shows a waveform of the 2-line 4-edge handshake. Here is an example of

transferring the data from the master to a slave. The master set the address or

data on the bus and assert the strobe. The slave checks the strobe and receives

the content on the bus at the negative edge of the strobe signal. After receiving

the slave changes the acknowledge low to high. The master removes the

content and changes strobe to high. After checking it, the slave returns the

acknowledge signal and goes to the next step. This method uses four edges to

send one item on the bus.

24

２-line ２-edge handshake

Strobe

Address/

Data

Acknowledge

Data ttem is transferred with both edges of the strobe

4 edge handshake is time consuming. So, we can send the next data at the

rising edge of the strobe. This is called 2 edge handshake. Address or data are

transferred at the both edge.

25

In the case of multiple slaves

Strobe

Address/

Data

Module １
Acknowledge

Module ２
Acknowledge

L because 2 is L

Acknowledge

Bus (Wired-OR)

Two line handshake does not work well when the number of slaves become

two or more. In this case, when both slaves receive the data, they turn

acknowledge line high. Since open drain bus is used for acknowledge line, it

turns high when the slower module changes the level. This diagram seems

well.

26

Quiz

◼ 3-line handshake (1 for strove and 2 for

acknowledge) is used for multiple slaves.

◼ Why 2-line handshake cannot manage

multiple slaves?

Let’s think well. Why 2-line handshake cannot manage multiple slaves and

another line is needed?

27

２-line cannot manage multiple slaves

Strobe

Address/

Data

Module １
Acknowledge

Module 2 (SLOW!)

Acknowledge

２ is still L

Then, go to next transfer！

OK！

Slow module

Cannot receive

Acknowledge

Bus (Wired-OR＝
AND)

Negative edge cannot be used for synchronization

This diagram illustrates the reason. Assume that the module 2 is extremely

slow. Even the case, the acknowledge for receiving data will transferred well

because of the wired or bus. When the slower module turns the level high, the

bus level becomes high. However, when master wants to go to next step and

turns the strobe high. In this case, the acknowledge signal becomes low when

the faster module turns the level low. So, the master cannot recognize whether

the slower module is ready or not. In this case, the master can go the next bus

transaction and misunderstand the acknowledge of the slower module.

28

３-line handshake

Strobe

Address/

Data

Acknowledge １

Acknowledge ２

3-line 2-edge handshake is also possible

OK!
Next transfer

OK!

Positive edges of two acknowledge lines are used in turn

This problem can be solved by providing another acknowledge signals and

using them in turn. In this case, only the rising edge can be used for the

handshake, and it certainly becomes high when the slower module turns to

high. This diagram shows 3-line 4-edge handshake, but 3-line 2-edge

handshake is possible.

29

Handshake in the chip

Strobe
Master

slave 1

slave 2

slave n
…

slave 1

slave 2

slave n
…

AND

AND

Master

Ack1

Ack2

Of course, wired-or wire is not used.

The concept itself is not changed.

Inside the chip, of course, the wired-or wire is not used, but the concept itself

is not changed. Two acknowledge signals are used to inform master whether

slaves are ready or not.

30

Synchronous bus is suitable for block

transfer

Strobe

Address/

Data

Acknowledge

Clock

The start/end handshake is the same, but block

transfer is possible synchronized with a clock

Usually, the handshake is required when bus transaction is started. But, the

data transfer can be done synchronized with the bus clock, and continuous data

transfer can be done. This is why the synchronous bus is suitable for block or

burst data transfer. After that, the handshake is taken.

31

Non-Split Transaction

Address

Memory reading

Data

transfer

Module A

Module B

Bus utilization is degraded

On the basic bus, the bus is locked during the waiting time. Assume that the

module A is a core and module B is a memory. When a core sends an address

with reading request, the memory starts reading the data. After the memory is

ready, the data block is transferred.

32

Split Transaction

データ転送
B→A

Address

Module A

Module B Module D

Address

Module C

Split transaction of A→B

Transaction C→D is executed

C→D

For efficient use of such a waiting time, the split transaction is used. After

sending the address and reading request, the module A releases the bus. So, the

module C can use the bus for its purpose. After the waiting time, the split

transaction from B to A starts again. After that, the data transfer from C to D is

executed.

33

Advanced I/O Buses

◼ PCI bus was widely used, but it could not cope with

recent computer system.

❑ 32bit/33MHz, 64bit/66MHz

◼ New standard I/O bus

❑ PCI-X

◼ 64bit/133MHz DDR/QDR

❑ PCI Express

◼ Point-to-point serial data transfer

◼ 1 lane:2.5Gbps

◼ x2, x4, x8

❑ Now, PCI Express is used instead of PCI bus.

As the bus for Personal Computers, PCI bus was widely used until about

1990’s. It was 32bit bus with 33MHz clock and then extended to 64bit with 66

MHz. But, it could not cope with the performance improvement of personal

computers. Then, the PCI-X, a straight extension was shortly, but they were

replaced with a new concept PCI express. It has been widely used.

34

PCI Express

◼ Consisting of serial one-to-one bidirectional connection

wires called lanes.

◼ Each lane supports 2.5Gbps/5Gbps (Physical Speed)

◼ Multiple lanes can be used as a link(x4, x8, x16 and

x32).

◼ The data is transferred in a packet called TLP

(Transaction Layer Packet).

◼ Interconnection network rather than the bus, but the

protocol of traditional PCI bus is supported.

port

Physical

layer

port

Physical

layer

lane

link

PCI Express is actually not a bus in traditional sense, but a serial high speed

one-to-one bidirectional connection. There are several bi-directional lanes and

form a link. The data is transferred in a packet called TLP or Transaction Layer

Packet. It is a packet switching network, but the protocol of old PCI bus is

supported.

35

PCIe standard
Gen1 Gen2 Gen3

Physical speed

（Gbps）
2.5 5 8

Bandwidth

(GB/sec)

0.25 0.5 1.0

x8 bandwidth

(GB/sec)

2.0 4.0 7.9

Encoding 8b/10b 8b/10b 128b/130b

Physical speed is x1.6, but almost twice practical performance is realized by

changing the encoding method.

OK. Let’s review PCIe standard. The physical link speed of Gen3 is 8Gbps,

the 1.6 times as that of Gen2. But, by using 128b/130b coding instead of

8b/10b used in Gen2, it achieves almost twice bandwidth that of Gen3.

36

An example of bus system using PCI

express
CPU

Root Complex Memory

System bus

Memory bus

Graphics

Switch Switch

End

point

End

point

End

point
PCI Bridge

PCI bus

PCI

Express

PCI express is used with a tree like structure. It is connected with CPU through

the root complex. It is actually a switch which has multiple links to other

switches. I/O modules are connected to end-point.

37

On-chip bus

◼ For on-chip implementation, various types of IP
(Intellectual Property) must be connected.

◼ Standard bus is required.
❑ AMBA (Advanced Microcontroller Bus Architecture): a bus

for ARM cores.

❑ CoreConnect: a bus for PowerPC cores.

❑ Wrapper based buses

◼ IPs are wrapped in the standard interface.

◼ For further performance improvement, NoCs
(Network on Chips) are introduced.

→ Introduced in the later part of this lecture

There are various types of on-chip bus, but recently network-on-chips or NoCs

are becoming used popularly.

38

NEC MP211

ARM926

PE0

ARM926

PE1

ARM926

PE2

SPX-K602

DSP

DMAC USB

OTG

3D

Acc.

Rot-

ater.
Image

Acc.

Cam

DTV

I/F.

LCD

I/F

Async

Bridge0

Async

Bridge1

APB

Bridge0

IIC UART

TIM1

TIM2

TIM3

WDT

Mem. card

PCM

APB

Bridge1
Bus Interface

Scheduler

SDRAM

Controller

SRAM

Interface

On-chip

SRAM

(640KB)

PLL OSC

Inst.

RAM

PMU

INTC TIM0GPIO SIO

Sec.

Acc.

SMU uWIRE

Camera
LCD

FLASH DDR SDRAM

Ｍｕｌｔｉ－Ｌａｙｅｒ ＡＨＢ

An example of on-chip bus

39

Summary of Bus

◼ Classic bus with passive wires has been

changed to active bus with a kind of switches

◼ High Speed Bus

❑ Synchronous bus with Split Transaction

❑ Using active devices

❑ It becomes somehow like a packet transfer with

switching hub.

OK. This is a summary of buses.

40

glossary 2

◼ Handshake 握手のことだがここでは正しく転送するた
めの信号のやりとりを指す

◼ Synchronous 同期式⇔Asynchronous 非同期式

◼ Strobe 転送を起動を知らせる信号線

◼ Acknowledge Strobeに対する応答用の信号線

◼ Edge 信号線の変化

◼ Split transaction バス転送を中断して途中に他の転送
を挟むことを可能にする方法

41

Crossbar switch

ｎ

ｍ

Cross point: small

switching element

The number of

cross points:

ｎｘｍ

Extension of the buses

Today’s next target is a crossbar switch. Some of you may feel strange,

because the crossbar is a typical switch. However, the crossbar switch is

actually an extension of multiple buses. Here we assume n cores and m

memory. Providing small switching elements at the cross points of their

individual buses, the crossbar can be built. That is, it requires nxm cross point

switches.

42

Non-blocking property

ｎ

ｍ

For different

destination,

conflict free

By make the best use of cross point switches dedicated lines can be formed for

the different destination. That is it is conflict free or non-blocking.

43

Head Of Line (HOL) conflict

ｎ

ｍ

X

Arbiter is required for each bus

The buffer is required

The number of cross

point is not dominant.

However, of course, if the destination module is the same the multiple requests

conflict with each other. In this case, like common buses, the arbiters are used.

Some people call this conflict, head of line or HOL conflict.

44

Input buffer switch

Crossbar

Input buffer

One of conflicting packets is selected.

Others are stored Into the input buffer

When conflict occurs, one of the requests is usually stored in the input buffer

or FIFO attached to the crossbar. After another request passing the crossbar,

the waiting request is transferred. The similar mechanism can be provided for

the bus. Parallel machines commonly use this style so called input buffer

switch.

45

Output buffer switch

Crossbar

Crossbar must work with ×n frequency of input/output rate.

No HOL problem.

Used in switches in WAN, but for parallel machines it is difficult.

Output buffer

works with ×n freq.

Some people claim that there is output buffer switch. But, for parallel machine,

it is rarely used, because for solving the HOL conflict, the multiple data must

be transferred to the output buffer. It means that the output buffer must work

with n times clock frequency. This situation is almost impossible for multicore

machines.

46

Buffers at cross-point

ｎ

ｍ

The buffer is provided

at each cross-point.

High performance but

the total amount of

buffer becomes large.

Another idea is providing buffers at cross point. It achieves high performance

but the total amount of buffer becomes huge.

47

48

An example of a modern router
◼ WH router with two virtual channels

5x5 XBAR

ARBITER

FIFO

FIFO

FIFO

FIFO

FIFOX+

X-

Y+

Y-

CORE

X+

X-

Y+

Y-

CORE

(Introduced later in this lecture)

This is a practical design example of a modern router using the crossbar. I will

explain this structure later in this lesson.

Merit/demerit of Crossbars

◼ Non-blocking property

◼ Simple structure/Control

◼ The hardware for cross-points usually do not

limit the system (Fallacy of crossbars)

◼ Extension is difficult by the pin-limitation of

LSIs

❑ If pins can be used, a large crossbar can be

constructed → Earth simulator

Here, the pros and cons of crossbars are summarized.

49

SUN T1

Core

Core

Core

Core

Core

Core

Core

Core

Crossbar

Switch

FPU

L2

Cache

bank
Directory

L2

Cache

bank
Directory

L2

Cache

bank
Directory

L2

Cache

bank
Directory

Single issue six-stage pipeline

RISC with 16KB Instruction cache/

8KB Data cache for L1
Total 3MB, 64byte Interleaved

Memory

This is an example of Sun microsystem’s earlier multi core processor.

50

The earth simulator

V
e

c
to

r
P

r
o

c
e

s
s
o

r

V
e

c
to

r
P

r
o

c
e

s
s
o

r

…

V
e

c
to

r
P

r
o

c
e

s
s
o

r

0 1 7

Shared Memory

16GB

V
e

c
to

r
P

r
o

c
e

s
s
o

r

V
e

c
to

r
P

r
o

c
e

s
s
o

r

…

V
e

c
to

r
P

r
o

c
e

s
s
o

r
0 1 7

Shared Memory

16GB

V
e

c
to

r
P

r
o

c
e

s
s
o

r

V
e

c
to

r
P

r
o

c
e

s
s
o

r

…

V
e

c
to

r
P

r
o

c
e

s
s
o

r

0 1 7

Shared Memory

16GB

….

Interconnection Network (16GB/s x 2)

Node 0 Node 1 Node 639

Peak performance

40TFLOPS

Japanese supercomputer “the earth simulator” used a huge crossbar. It

connected 639 modules.

51

glossary 3

◼ Crossbar switch: クロスバスイッチ、ここでは主としてスイッチ本体を
指すが、バッファも入れて考える場合もある

◼ Router:パケットを転送するためのハードウェア全体を指す

◼ WH, Virtual Channel:この授業のもっとあとで紹介するのでここでは
深く追求しないでよい

◼ Non-blocking, blocking:出力ポートが重ならなければ、衝突が起きな
いのがノンブロッキング、出力ポートが重ならなくてもスイッチ内部で
衝突するのがブロッキング

◼ HOL conflict:出線競合、出力ポートが重なることで起きる衝突

52

Homework 2

◼ Your computer uses PCIe gen2 x 8.

1. How much maximum bandwidth can be used ?

2. You want to improve the bandwidth.

2-1. When you use PCIe gen2 x 16, how much

maximum bandwidth can be used?

2-2. You changed the bus to PCIe gen3 x 8, how

much maximum bandwidth can be used?

Just a simple calculation. You will spend only about

3 minutes.

OK. This homework is too simple. Maybe you will spend 3 minutes.

53

