Snoop cache

AMANO, Hideharu, Keio University
hunga@am. ics. keio. ac. jp
Textbook pp.40-60

Cache memory

A small high speed memory for storing
frequently accessed data/instructions.

Essential for recent microprocessors.

Basis knowledge for uni-processor’s cache is
reviewed first.

First of all, let’s review the cache memory. It is a small high speed memory for

storing frequently accessed data or instructions. It is essential for modern
computers, so most of you know of it.

@ Transparent from Software

Memory Hierarchy

itv i §On-Chip cache

Locality is used. L1 Cache | ~64KB 1-2clock
Small high speed L2 Cache | ~256KB 3-10clock

L3 Cache 2M~4MB 10-20clock

SRAM

|

Large low speed Main memory

DRAM 4~16GB 50-100clock

Managed by Secondary Memory
Operating J-msec
System B

| showed this diagram of memory hierarchy in the previous lesson. In this
diagram, there are three levels, but | simplize the structure to only a single one.

Controlling cache

Mapping

o direct map

0 n-way set associative map
o full-map

Write policy

o write through

o write back

Replace policy

o LRU(Least Recently Used)

Important design issues of cache are shown here.

Direct Map

From CPU
'l 0011010
0011 | 010|100 -
010 Main Memory

(1KB=128blocks)
Yes : Hit

—
[
010 |
L+ 0011

Cache Directory

(Tag Memory) Simple Directory structure
8 entries X (4bit)

» Data

Cache
(64B=8blocks)

Let me explain the basic structure of cache with this simple figure for very
small cache system. Here, the main memory is 1KB and cache is 64B. Cache
system is managed with small data block. Here a block is 8 bytes. That is this
cache can store 8 blocks. Of course, the size is too small but the structure itself
is the same as the practical cache. And also note that the main memory is L2
cache for the multi-core CPU. So, I will use this figure in order to save the
number of digits. There are 128 blocks in the main memory, and a block is
stored into the cache block whose least three bits are the same. Here this
0011010 block is stored into 010 of the cache memory. These three bits are
called the index. The other 4 bits are used as an identifier of the block, and
called key or tag. The cache directory or tag memory is provided to keep the
tag that is stored in the cache. This example, 0011 is stored here. When address
from CPU is given, the cache directory and the cache are referred at the same
time by the index, and if the upper 4 bits of the address matches to the key
stored in the cache memory, it means that the target block is in the cache. It is
called hit. In this case, the read out data is forwarded to the requesting CPU.
This simplest mapping is called the direct map.

Direct Map (Conflict Miss)

From CPU
i | 0000010
0000 |010|100 \
010 Main Memory
No: Miss Hit
014

L. 0011, |

Cache

Conflict Miss occurs between two blocks with
the same index

Cache Directory
(Tag Memory)

If the upper 4bit address from the CPU does not match the key from the
directory, it means that the target block is not stored in the cache. This is called
cache miss. In this case, the target block must be fetched from the main
memory and stored in the cache. At the same time, the directory is rewritten
with the corresponding key. In this case, 0000. This operation is called replace.
In the direct map cache, two blocks whose index is the same cannot stored in
the cache memory. The cache miss by conflicting the index is called the
conflict miss. The miss ratio of the direct map cache is not good because of

this type miss.

2-way set associative Map

From CPU
3 0011010
00110 |10[100 .
10 Main Memory

(1KB=128blocks)
Yes: Hit

» Data

—
[
10
— 00110 Cache
(64B=8blocks)

No
- © -
/00000

Cache Directory
(Fag-Memony)
4 entries X 5bit X 2

In order to improve it, two cache blocks form a set, and the index is assigned
to each set. Here, there are 4 sets, and least two digits of the block number is
used for the index. Here index is 10, and the block 0011010 is stored here. Two
cache directories are provided for each way of the cache, and referred by the
same index in parallel. The comparison is also done in parallel, and if either of
them matches, the data is forwarded to the CPU. This structure is called 2-way
set associative map. Apparently, the flexibility of storing the block is improved
compared with the direct map method.

‘ 2-way set associative Map
From CPU
Il 0000010 0011010
00000 [10[100 .
10
Main Memory
(1KB=128 blocks)
No .
10
- 00110 Cache
(64B=8 blocks)
=\ Yes: Hit L _ Data
100000 Cache Directory Conflict Miss is reduced
(Taag Memorv)
\] P
4 entries X 5bit X 2

The case that causes the conflict can be saved because they can be stored in
the different ways like this. Similarly, 4-way, 8-way and more can be defined.
But here | will omit the explanation.

Write Through (Hit)

0011010

From CPU .
Main Memory
0011 (1KB=128 blocks)

The main memory is updated

0011 E
Hit

Cache
(64B=8 blocks)

Write Data

Cache Directory
(Tag Memory)
8 entries X (4bit)

For the read operation, when cache is hit, the data are forwarded to the CPU. If
miss happens, the main memory is accessed and the fetched block is filled into
the cache. However, for the write operation, there are two policies. One is
write through. In this policy, when write request hits, the written data are

forwarded to the main memory directly.

‘ Write Through (Miss: Write non-allocate(Direct write))

0000010 0011010

From CPU

Main Memory
(1KB=128 blocks)

Only main memory is updated

0011

[T
Miss 4L.

Cache

(64B=8 blocks)
Write Data

Cache Directory

(Tag Memory)
8 entries X (4bit)

There are two policies when write request miss-hits. Write non-allocate or

direct write bypasses the cache and the data are directly written into the main

memory. This policy is easy to be implemented, but the hit ratio is slightly

degraded.

10

‘ Write Through (Miss: Write allocate(Fetch-on- write))

0000010 0011010

From CPU

0000

Main Memory

(1KB=128 blocks)

Miss

Cache Directory

(Tag Memory)

8 entries X (4bit)

Cache
(64B=8 blocks)

Write Data

Write allocated or fetch-on-write fetches the block like read-miss happens.

11

Write Through (Miss: Write allocate(Fetch-on- write))

0000010 0011010

From CPU

0000

Main Memory
(1KB=128 blocks)

Miss

Cache Directory

(Tag Memory)

8 entries X (4bit)

Cache
(64B=8 blocks)

Write Data

After the replacement, the data are written just like the case of write hits.

Because of the locality of access, the replaced block may be accessed soon.

So, the hit ratio is slightly better than that of write-non-allocate policy.

12

Write Back (Hit)

0011010

From CPU .

Main Memory
0011 (1KB=128 blocks)

Dirty

0011 lo—1 | E
Hit

Cache
(64B=8 blocks)

Cache Directory Write Data

(Tag Memory)
8 entries X (4bit+1bit)

Another policy is write back. In this policy, the write data are written into only
cache, but the main memory are not updated. In this case, the content of cache
is different from the main memory. In order to show it, the dirty bit is provided
to every directory entry and when first write hits, the bit turns on.

‘ Write Back (Replace)

0000010 0011010

From CPU .
Write Main Memory
0000 Back (1KB=128 blocks)
Dirty
0011 [1
Miss

Cache
(64B=8 blocks)

Cache Directory
(Tag Memory)
8 entries X (4bit+1bit)

When the dirty cache block becomes the target of replacement, it must be
written back.

14

Write Back (Replace)

0000010 0011010

From CPU E .
Main Memory
0000 (1KB=128 blocks)

Replace

Clean

0000 |0

Cache
(64B=8 blocks)

Cache Directory
(Tag Memory)
8 entries X (4bit+1bit)

After the write-back, the new cache is filled, at that time the dirty bit of the
cache entry is reset to show the cache is clean, that is the content of the cache
block is the same as the main memory.

Shared memory connected to the bus

Cache is required

o Shared cache

Often difficult to implement even in on-chip
multiprocessors

o Private cache
Consistency problem — Snoop cache

OK.

Now, let me explain about the cache for multi-core system.

16

‘ Shared Cache

= 1 port shared cache
o Severe access conflict
= 4-port shared cache

o A large multi-port
memory is hard to
implement

Shared cache is often used for L2
cache of on-chip multiprocessors

A simple idea is to share the cache with multi cores. Of course, it causes the
severe access conflict at the cache. If multi-port memory is used, the conflict is
reduced. However, a large multi-port memory is hard to be implemented, and
the multi-port function is only available for read requests. Thus, shared cache
is used for a L2 cache.

| Private (Snoop) Cache

Main Memory
(L2 Cache)

Each PU provides its own private cache « -

Another idea is private cache. Each processing unit or core has its own cache.

It has a benefit of high speed data access and also reducing the shared bus.

However, it causes the cache coherence problem or cache consistency
problem.

18

Bus as a broadcast media

A single module can send (write) data to the
media
All modules can receive (read) the same data
— Broadcasting Tree

Crossbar + Bus

Network on Chip (NoC)

Here, | show as a shape of classic bus but
remember that it is just a logical image.

Here, | will show a bus as a simple wire images. However, note that it is just a
logical image. It can be actually implemented as logic gates inside the chip.

19

Cache coherence problem

Main Memory
(L2 Cache)

/ N\
< | A Iy{e b‘andel share‘d bus >
A A
CRCNCHC
© @ © ©

The same block is cached in two cache modules

When a PU reads the block, the main memory or L2 cache is accessed and the
block A is read out. Another PU can copy the same block A in its own cache. If
only read operations are executed, there is no problem.

20

Cache coherence (consistency) problem

Main Memory
(L2 Cache)

< A large bandwidtr‘l shared bus >
| | |
A A
T

Data in each cache is not the same

However, what happens a PU writes data, the block is updated, but another PU
who has the same copy cannot know of that. As a result, the content of two
caches becomes different or inconsistent.

21

Coherence vs. Consistency

Coherence and consistency are
complementary:

Coherence defines the behavior of reads and
writes to the same memory location, while

Consistency defines the behavior of reads
and writes with respect to accesses to other
memory location.

Hennessy & Patterson “Computer Architecture
the 5™ edition” pp.353

The words coherence and consistency are complement. That is coherence
defines the behavior or reads and writes to the same memory location, while
consistency is for other memory location. Since the cache block may include
both, | think both are OK to use.

22

Cache Consistency Protocol

Each cache keeps consistency by
monitoring (snooping) bus transactions.

Write Through: Every written data updates the shared memory.
Frequent access of bus will degrade performance

Basis (Synapse)

Ilinois

Write Back: Berkeley
Update Firefly
(Broadcast) Dragon

Invalidate

For keep consistency a certain protocol is needed. There are various types of
protocols. I will introduce representative ones.

23

Glossary 1

Shared Cache:®}FFvvia

Private Cache: G & F vyl a

Snoop Cache:RX—T Xyl a NRZERTHILIZE>THEND—H
FWMAXY Y2, SEIDA U T—T . BIEAHIZSnooplEl CZEZEMNEED
BIELVDEKRT, Fy—)—T5Y9UICHTLARDLRTEERIZ(ZD) R,
Coherent(Consistency) Problem: ¥ JLF 70ty 4 TEPEAF vy 1%
BFOBRICEORED-—HA BN G5 EE, —HEMEEIETE D15
4. Coherent Cache &M 5%, Conherence&Consistency®:EWLMEEICL TR
LRIZxHFTHEDMNESITRLRIZHT H5EHD D

Directmap:# 1LYt 2v T FryiadIvEL T ARXD—D

n-way set associative:zyb 7Y 7747 RLLIvEV S AK

Write through, Write back: 54 F R JL—, SA b\ EERAHKR—D
£ |l Write throughl& ZDIZ53 AV, Direct Write [B X iR fREEEA
A&, Fetchon Writeld, —ER-S>TEThoETMZ LA
Dirty/Clean:ZC TIEEREIBEABN—HBLALYT BT L,
COIDDFyv 1 DAREESFFIRTELLD T, A2AFTHEIER TL
5128 . KK MBERS,

24

\ Write Through Cache
(Invalidation type : Data read out)

I: Invalidated
V :Valid

The idea of the snoop cache came from the write through cache. I am going to
explain the invalidation type first. Assume that two PUs read the cache block,
two copies are made.

25

Write Through Cache
(Invalidate type : Data write into)

I: Invalidate
V: Valid

Main Memory

(L2 £ache)

< I/qa/B{dr‘l hared b >
A lar andwidth shared bus
| | Monitoring (Snooping)|
7
Vv V-l
4

When a PU writes the data, it is transferred to the main memory since it is a
write through cache. At that time, the address and the information which
shows the request is write are transferred through the bus. Since the
information on the bus can be monitored by other cache, all cache modules
check its address and whether it is matched any block in the cache. If it
matches, the cache turns its block to invalidate or 1. For this purpose, like the
dirty bit, all entries need the flag which shows the valid or not. This
monitoring operation is called snoop, since the cache monitors everything
secretly.

26

Write Through Cache
(Invalidate type Write-non-allocate)

The target cache block is not existing in the cache

I: Invalidated
Main Memory V:Valid
< A large bandwidth shared bus >
\ \ Monitoring\ (Snooping)\

V= |

When write miss happens, the data are sent to the main memory directly in the
write-non-allocate type cache. But each cache snoops it and invalidates the
block similarly to the case of write hit.

Fi rou
(Invalidate type Write-allocate)

Cache block is not existing in the target cache

I: Invalidated
V :Valid

Write allocate type cache can work in the same manner. If write miss happens.

28

‘ Write Through Cache
(Invalidate type Write-allocate)

I: Invalidated
V :Valid

First, Fetch ‘

Fetch and write oq:

The block is fetched from the main memory, and the data are written on it.

29

‘ Write Through Cache
(Invalidate type Write-allocate)

I: Invalidated
V :Valid

Fetch and write oq:

Other copies are invalidated by snooping the data.

30

Write Through Cache
(Update type)

I: Invalidated
V: Valid

Main Memory

N
< A Ia}s/gandwmh \Qared bus >

\// \ Monitori\q\@ (Snoop) |

v v
4

Writel Data is
) () (P

Instead of invalidating the block, the data can be written into the cache as well
as main memory. The copies are updated, and the contents can be kept the
same as the main memory. This case, the block was not invalidate. This

concept is called the update style.

The structure of Snoop cache

=

I Shared bus

Directory can be
Directory accessed
simultaneously from
both sides.
The same Cache Memory The bus transaction
Directory Entity can be checked
(Dual Port) without caring the
access from CPU.

Directory /

g
Q CPU

For snooping the shared bus, the directory is needed for shared bus as well as
for the CPU. The contents must be the same. Dual port memory is sometimes
used, but twin memory modules which synchronized only writing is easier.

Quiz

Following accesses are done sequentially into the
same cache block of Write through Write non-
allocate protocol. How the state of each cache
block is changed ?

PU A: Read

PU B: Read

PU A: Write

PU B: Read

PU B: Write

PU A: Write

0O 0O 0O 0 0O D

Let’s try a simple quiz.

33

Answer

PU A: Read
PU B: Read
PU A: Write
PU B: Read
PU B: Write
PU A: Write

0O 0O DO O

O

O

>

T T < <KL

< - < |

< <

Let’s try a simple quiz.

34

The Problem of Write Through Cache

In uniprocessors, the performance of the
write through cache with well designed write
buffers is comparable to that of write back
cache.

However, in bus connected multiprocessors,
the write through cache has a problem of bus
congestion.

The early snoop cache uses the write through cache and several commercial
machines were successful. However, in bus connected multiprocessors, the
write through cache has a problem of bus congestion, and the performance
improvement of a CPU become great, the write through cache became
unpractical.

35

Basic PI’OtOCOl States attached to each block

C:Clean (Consistent
to shared memory)
Main Memory D: Dirty

/"\ | I: Invalidate
< A/a/ge bandwi}t\shared bus >
V4 ERERN |
C C
Read | Read |

The implementation to the write back cache is relatively difficult. Here, | show
the simplest protocol. Each directory entry has 2 bits; valid/invalid and
clean/dirty. A block has three states Clean, Dirty or Invalidate. When two PUs
read the data, these blocks become Clean.

Basic Protocol (A PU writes the data)

Main Memory

< A large bandwidth shared bus >
- - 0 I
Invalldqtlon signal \ I \

Invalidation signal: address only transaction

The problem is when a PU writes the data. As common write back cache, the
state changes from Clean to Dirty. In order to notice other PUs, the
invalidation signal is transferred on the shared bus. It includes only address
and invalidation request. By snooping the address, each cache changes its state
from Clean to Invalidated like this. Once the state becomes Dirty, of course, no
transactions on the shared bus are needed. The block marked Dirty can be read
and write freely as common write back cache does.

37

Basic Protocol (A PU reads out)

Main Memory

.4
ﬂRead request
< A Iaeridth shared bus >
‘ ‘ Snoop‘
| I D

The problem happens when the cache marked dirty is accessed by the other
PU. When this PU reads the data, since it is invalidated, a miss occurs. It sends
the read request to the main memory, but there is a dirty cache.

38

Basic Protocol (A PU reads out)

Main Memory

|
< A large bandwidth | shared bus >
| | | |

D—C

® ® ® e

This cache snoops the shared bus and recognizes the read request. At that time,
this cache stops main memory answering the request and

instead it, the cache sends the block on the bus and write back is done. After
that, the block is transferred to the requesting cache. The write back and filling
requesting cache can be done in the multi-casting manner if the bus protocol
allows. After this operation, both cache blocks become Clean.

39

Main Memory

X
ﬂ Write request

Basic Protocol (A PU writes into again)

A IarVaﬁjwidth shared bus

<=

‘ Snoop‘

Snoop
Cache

Snoop
Cache

® ® ® e

>

What happens the PU causes the write miss. As the case of read miss, the
request goes to the main memory same, since the write back cache uses the

write allocate policy.

40

Basic Protocol (A PU writes into again)

Main Memory

|
< A large bandwidth | shared bus >
| | |

D—|

o ® o e

The cache providing the Dirty block responds as well and writes the block
back to the main memory, then it is forwarded to the requesting cache. After
writing data into the block, it directly turns into Dirty state. On the other hand,
after sending the block, the supplier’s state becomes Invalidated directly.

41

State Transition Diagram of the Basic Protocol

. write
write)
write miss ;mstsh
Replace . or the
read P Write back block
& Replace
Replace

write hit Invalidate

write miss Replace Invalidate

/ for the
read miss Write back block
& Replace

read miss Replace

CPU request Bus snoop request

The cache protocol can be described by the state transition diagrams. Two
diagrams must be provided. One is from CPU request and the other is from the
shared bus.

States for each block

Ilinois’s ProtocolMEST)

CE:Clean Exclusive
CS:Clean Sharable

Main Memory DE:Di_rty Exclusive
/’ ‘ I: Invalidate
< A % bandwidth shared bus >
CE/ Snoop Snoop
Cache Cache

The first PU reads

The basic protocol can be improved. One idea is providing exclusive state by
adding an extra bit to each directory entry. It is set when there is no other copy
in the system. Dirty cache is always exclusive. So, four states; clean exclusive,
clean sharable, dirty exclusive and invalidated are used. When the first PU
reads the block it becomes Clean Exclusive. It can be detected there is no
notice from other caches snooping the shared bus.

43

. . States for each block
Illinois’s Protocol

CE:Clean Exclusive
CS:Clean Sharable

Main Memory DE:Dirty Exclusive
\ ‘ I: Invalidate
< A large banvah shared bus
‘ Snoop ‘ ‘SnOOp ‘
CE Snoop Snoop
CS Cache Cache
SN

°® 0 e

The second PU reads

If other cache reads the same block, the cache with CE block responds, and
both cache blocks turn to the Clean Sharable. In this case, the operation of this
protocol is the same as the basic protocol.

44

Vi

Main Memory

[linois’s Protocol (The role of CE)

CE:Clean Exclusive
CS:Clean Sharable
DE:Dirty Exclusive

® © ® ®

CE is changed into DE without using the bus

/ I: Invalidate
< A I};ﬁ bandwidth shared bus
/|
CE Snoop Snoop Snoop
Cache Cache Cache

>

When the PU writes the data into the block with the CE, it changes its state

into Dirty Exclusive without sending the invalidation signal on the bus. This is
only the benefit of introducing the exclusive state. Some people think that the

performance improvement by introducing the CE is not so large. However,
because the shared data between PUs is actually not so large, most of
invalidation signals in the basic protocol are in vain. So, this protocol called
MESI or Illinois protocol is popularly used.

45

Berkeley's protocol (MOSI)

Main Memory

////

|

A Iarg/e/bandwidth shared bus

<

|

|

|

/

/

Snoop
Cache

Snoop
Cache

XX

Ownership—responsibility of write back
OS:Owned Sharable OE:Owned Exclusive

US:Unowned Sharable 1 Invalidated

>

46

Berkeley's protocol (MOSI protocol)

Main Memory
\

< A large bandwidt?\shared bus >
| [\

Snoop Snoop
Cache Cache

© 0B e

Ownership—responsibility of write back
OS:Owned Sharable OE:Owned Exclusive
US:Unowned Sharable 1 Invalidated

Another idea is introducing the concept of ownership. Dirty or clean is decided
whether the content of block is the same as that of the main memory or not.
But, by using the concept of ownership, the cache can behave instead of the
main memory. Here, four states, owned sharable, owned exclusive, unowned
sharable and invalidated. The default owner is the main memory, when a PU
reads the data the copy becomes unowned sharable.

47

Main Memory

Berkeley's protocol (A PU writes into)

|
<:::::::ij A large bandwidth shared bus
‘ ‘ snoop

Snoop
Cache

Snoop
Cache

|
® ® © 6

Invalidation is done like the basic protocol

>

When a PU writes the data, the block with unowned sharable sends the
invalidation signals, and the all US blocks are invalidated. At that time, the

block turns Owned Exclusive, that is, the PU becames the owner.

48

Berkeley's protocol

Main Memory

|

The block with US is
not required to be
written back

<:::::::ij A large bandwidth shared bus
\ | snoop_ |

>

Snoop
Cache

Snoop
Cache

A PU reads a block owned
by the other PU

5 00 e

When a PU occurs the read miss, the cache issues the request to the owner not

for the main memory. This case, the owner, the cache with OE responds.

49

Berkeley's protocol

Main Memory

The block with US is
not required to be

written back

<i:::::i:j A large bandwidth shared bus
| | |

Snoop
Cache

—>O‘§

Snoop
Cache

Inter-cache transfer occurs!

6 00 e

>

In this case, the block with US is not consistent with the shared memory.

In this case, the block is transferred to the requesting cache without write-back
to the main memory. This method has two benefits: First, since the write back
only occurs when the owner is replaced, redundant write back can be reduced.

Second, the cache-to-cache data transfer can be done with much more speed
than data transfer between the main memory or upper level cache. After the
block transfer, the owner becomes owned sharable, and the requesting cache

becomes US. Note that, this US block is consistent to the owner, not the main

memory. This is called MOSI protocol or Berkeley protocol.

50

Firefly protocol (MES)

The usage of CE is the same
as thatin lllinois.

Main Memory

N
< A Iargyﬁmdmdt\shared bus >
] |

CE‘/ Snoop Snoop

Cache Cache
—CS

b o0 e

Second read: CS

CE:Clean Exclusive CS:Clean Sharable
DE:Dirty EXxclusive | Invalidate is not used!

We can use update style protocol instead of the invalidation. This MES
protocol only uses CE, CS, and DE. The protocol is almost the same as that of
Illinois or MESI protocol. That is, the first reading cache block becomes CE
but by the access from the next PUs, they all turn to CS.

o1

Firefly protocol (Writes into the CS

block)
Mai), Memory
< A Iay@andwidth shared bus >
Snoop n Snoop
Cache Cache

0 © ® o

All caches and shared memory are updated — Like update type
Write Through Cache

But the next step is quite different. When a PU writes the data, it is transferred
both to main memory and other copies. Since the other cache block copy is
updated, the state keeps CS. It means that once the state becomes CS, the
writing data are always transferred through the shared bus.

Firefly protocol (The role of CE)

Main Memory
< A % bandwidth shared bus >
/ Snoop Snoop Snoop
Cache Cache Cache

‘D © ® 6

Like Illinoi’s, writing CE does not require bus transactions

However, when a PU writes the data into CE block, it turns into DE without
sending invalidation signal. And for DE blocks, the connecting CPU can
read/write freely. It is called MES protocol or Firefly protocol named after

DEC’s workstation.

53

Dragon protocol (MOES)

Main Memory

e
< A Iarg/e/bandW|dth shared bus >
\ am |

/

Snoop Snoop
Cache Cache

XX

Ownership—Resposibility of write back
OS:Owned Sharable OE:Owned Exclusive
US:Unowned Sharable UE:Unowned Exclusive

Another update style protocol uses both the concept of exclusive/shared and
ownership. Thus, four states OS, OE, US, and UE are used.

When the first PU reads the data, the block state becomes UE.

54

Dragon protocol

Main Memory
\

‘ snoop

Snoop
UE Cache

—J

< A large bandwidt?\shared bus
[\
\

Snoop
Cache

us
!

PECRCRE

Ownership—Resposibility of write back
OS:Owned Sharable OE:Owned Exclusive
US:Unowned Sharable UE:Unowned Exclusive

>

If the second PU reads the same cache block, both blocks become US.

55

Dragon protocol

Main Memory

|
< A large bandwidth shared bus >
| |

‘ update

Snoop Snoop
Cache Cache
—>OS

S 6 0 e

Only corresponding cache block is updated.
The block with US is not required to be written back.

When a PU writes the block with US, the data are directly transferred through
the shared bus and the cache copy is updated. Thus, although the owner state

becomes OS, the state of copies stays in US. It is like the behavior of Firefly
protocol.

Dragon protocol

Main Memory

|
<::::::i:j A large bandwidth shared bus
‘ ‘ Miss hit ‘

Snoop
Cache

Snoop
Cache

6 00 e

A PU reads a block owned by the other PU.

>

On the other hand, when the PU miss-hits the block, it requires the block to the

owner like Berkeley protocol.

57

Dragon protocol

Main Memory

|
< A large bandwidth shared bus >
| | |

Snoop Snoop
Cache Cache
—>O‘§

® ©'0 e

Direct inter-cache data transfer like Berkeley’s protocol

In this case, the cache block is transferred from the owner directly. In this case,

the owner becomes OS while the requesting cache block becomes US.

58

Dragon protocol (The role of the UE)

Main Memory

|
< A large bandwidth shared bus >
| | |

Snoop Snoop Snoop
Cache Cache Cache

‘D ® ®

No bus transaction is needed like CE is I1linois’

Like Illinois protocol, the writing request to US block changes its state into OE
without using any bus transaction.

59

MOESI Protocol class

Valid

Owned g-Sharable Exclusive

ied E:

Exclusive

l:
Invalid

The cache coherence protocol can be classified by the states attached to each
cache block. First, the block is classified into valid or invalid. For the valid
block, if there is no other copy, it is exclusive. Also, if it is an owner, the state
is owned. Thus, a block is in one of five states OE, OS, UE, US, and I. In
order to simple representation, OE is called M for modified, OS is O for
owned, UE is E for exclusive, US is S for sharable, and | for invalidate. Since
the protocol is represented with five letters MOESI, it is called the MOESI

protocol class.

60

MOZESI protocol class

Basic: MSI
lllinois: MESI
Berkeley:MOSI
Firefly: MES
Dragon:MOES

Theoretically well defined model.
Detail of cache is not characterized in the model.

The protocols introduced before were summarized in this slide.

61

Invalidate vs. Update

The drawback of Invalidate protocol

o Frequent data writing to shared data makes bus
congestion — ping-pong effect

The drawback of Update protocol

o Once a block shared, every writing data must use
shared bus.

Improvement
o Competitive Snooping
o Variable Protocol Cache

Let’s compare the invalidate protocol versus update protocol. The drawback of
invalidate protocol is the bus congestion caused by the frequent data writing to
the shared data.

62

Ping-pong effect (A PU writes into)

Main Memory

< A large bandwidth shared bus >
— |
Invalldqtlon \ I \

Snoop Snoop
Cache Cache

50 o e

Assume that these two PUs share the same cache block and frequently write
and read data. When this PU writes the data, it invalidates the copy with
invalidation signal.

63

Ping-pong effect
(The other reads out)

Main Memory

|
< A large bandwidth | shared bus >
| | |

Snoop Snoop
Cache Cache

XXX

When PU attached to the invalidated cache reads the data, the cache block is
written back to the main memory and transferred to the requesting cache.

Ping-pong effect
(The other writes again)

Main Memory

|

A large bandwidth shared bus

< \ i Invalid?tion-

|

C

Snoop
Cache

Snoop
Cache

56 6 o

>

Then this time, assume that this PU writes the data, this block is invalidated.

65

Ping-pong effect (A PU reads again)

Main Memory

|
<:::::::ij A large bandwidth | shared bus [::::::::>
| | |

Snoop Snoop
Cache Cache

Acache block goes and returns iteratively
—Ping-pong effect

Then, if the PU reads the data, this time the data block is transferred the
opposite direction. That is, by the frequent reads/writes by two PUs for the
same block, a cache block goes and returns iteratively. This phenomenon is
called the ping-pong effect.

66

The drawback of update protocol
(Fireﬂy pr tacal)

Mai), Memory
< A Iwandwidth shared bus >
Snoop ™ Snoop
Cache Cache

0 © ®, 6

Once a block becomes CS, a block is sent even if B the
block is not used any more.
False Sharing causes unnecessary bus transaction.

On the other hand, in the update protocol, once the state becomes CS, all
writing data are transferred through the bus, if the update target cache is

replaced. That is, the performance is the same as that of write through cache.

There are several proposals to solve these problems, there is no definitive
method. In the current multi-core, the MESI or MOESI protocols are used
now.

67

Glossary 2

Invalidation: #&%h1E . Update: B #t

g,)onsistency Protocol: F¥viaD—HMEEHFIT H-HDEYIR
lllinois, Berkeley, Dragon, Firefly: Z7B+3)L M & il lllinois&
Berkeley 312 % L 1= K% 4 . Dragon,Fireflyl3% %t Xerox&DEC
NI %

Exclusive: HEfth), DFEVMIZOE—MNFELEWIE

Modify: ZEBLf-C&

Owner: A —7 . FiFELEARIERELO—HBICERZHO>ER
HTH5, OwnershiplZFrE

Comépetitive:ﬁﬁi%‘ﬂ"]s COSEBIEZOOAEENYBZSEIZE-
TW%,

Injection;EA ., DEYE-TLAENSKYIEHLAATLESE

68

Summary

Snoop Cache is the most successful technique for
parallel architectures.

In order to use multiple buses, a single block for
sending control signals is used.

Sophisticated techniques do not improve the
performance so much.

Variable structures can be considerable for on-chip
multiprocessors.

Recently, snoop protocols using NoC(Network-on-
chip) are researched.

This slide shows the summary of today’s lesson.

69

Exercise

Following accesses are done sequentially
into the same cache block of lllinois
protocol and Firefly protocol. How the state
of each cache block is changed ?

o PU A: Read

PU B: Read

PU A: Write

PU B: Read

PU B: Write

PU A: Write

0O 0O 0 o0 o

70

Private MPCQre (AM+NEC) It uses MESI Protocol

FIQ blocks
{ Interrupt Distributor ‘
! !
| | Timer|| CPU Timer|| CPU Timerf| CPU Timerfl CPU
Wdog f|interface Wdog ||interface Wdog [|interface Wdog ||interface
IRQ IRQ IRQ IRQ
! ! ! '
CPU/VFP CPU/VFP CPU/VFP CPU/VFP
L1 Memory L1 Memory L1 Memory L1 Memory
Snoop Control Unit (SCU) Coherence
Private Control Bus
Peripheral IIII IIII
Bus - Private
Duplicated AXI RIW
L1 Tag 64bit Bus
’ L2 Cache —

ADDAT EZREFRE. HRET DX v v UJIFARX—TT
EHEIT D

Competitive Snooping

<

M@, Memory
A lari idth shared bus
//Snoop Snoop
Cache Cache

® ® o e

Update n times, and then invalidates

The performance is degraded in some cases.

>

72

Write Once (Goodman Protocol)

Main Memory

bus

< A large bandwidth shared
Invalidqtion \

Snoop
Cache

© C
— | —D,
‘ ‘ ®
ONONON

>

Snoop
Cache

Main memory is updated with invalidation.
Only the first written data is transferred to the main memory.

73

Read Broadcast(Berkeley)

Main Memory

|

A large bandwidth shared bus

<

|

| |

>

Snoop

Cache e

—I

us
—I

5
"
(=)

Invalidation is the same as the basic protocol.

74

Read Broadcast

Main Memory

|

A large bandwidth shared bus

<

|

|

—>O‘

L
D

Snoop
Cache

|
—US

— 1

DRONS

Read data is broadcast to other invalidated cache.

75

Cache injection

Main Memory

|
< A large bandwidth shared bus
| | | |

Snoop

| |
Cach
DU e SUs | o

® ©'® @

The same block is injected.

