Discrete Fourier Transform(DFT)

* DFT applies Fourier T
transform to digitized _f”“ln, p (,J“H ™ N[
data. —] S "L‘ﬂ]"i‘ | J‘ri

* The signal is P s —
transformed to time
domain to frequency ‘ =EY t el
domain.

* IDFT is Inverse DFT.

-0.2

0 64.0

DFT(1)

* Discrete Fourier Transform(DFT)
* Time domain—->Frequency domain

N-1

X(k) . z —jz—nkn
— x(n)e ' N

n=0

* Inverse DFT (iDFT)

* Frequency domain—>Time domain

N-1

x(n) = % 2 X(k)ejZWnk"

k=0

DFT(2)

* Apply Euler’s formula

_2m 2T 2T
e TN ™ = cos <Wkn> —jsin<Wkn>

* DFT N-1
X(k) = Z x(n) <cos (%T kn) — j sin <2Wn kn))
 IDFT

N-1

x(n) = % Z X(k) <COS <2Wn kn) + j sin <2Wn kn))

k=0

DFT(3)

e Separation of Real Part and Imaginary Part

N-1

X,o(k) = Z (xre (n) cos (%T kn> + x;,(n) sin <2Wn kn))) DET
n=0_1 >
) = i (27 , 2T .
Xim(k) = (—xre (n) sin (W n) + x;m (n) cos (W n)))

N-1 I
IDFT

Xpe(n) = % 2 (Xre (k) cos (%T kn) — Xim (k) sin (%T kn>>)

X)) = Z (%reGsin (5 kn) 4+ XG0 o5 (54),

k=0

DFT(4)

e Separation of real part and imaginary part

N—-1
Xre(k) = 2 (xre (n) cos <2WT[kn) + Xim(n) sin <2WT[kn)) \
n=0
~1
Z 21 2T > DFT
Xim(k) =j (—xre (n) sin (— kn) + X, (n) cos (— kn))
N N)
n=0
N-1
2T T
Xre(n) = & Z (Xre (k) cos (— kn> — Xim () sin <— kn)))
N N N .
= > iDFT
~1
Xim(n) = j% Z <Xre (k) sin <2Wn kn) + Xim (k) cos (%T kn)))

k=0

DFT(5)

for(i = 0; i < num; i++){
for(j = 0; j < num; j++){
temp_reli] += re[j]*cos(2*PI*i*j/num + flag*im[j]*sim(2*PI*i*j/num);
temp_im[i] += -flag*re[j]1*sin(2*PI*i*j/num) + im[j]*cos(2*P1*i*j/num);
// if DFT, flag = 1, else if iDFT, flag == -1
}
if(iDFT){
temp_re[i] /= num;
temp_im[i] /= num;
}
}
for(i = 0; i < num; i++){
re[i] = temp_reJil;
im[i] = temp_im]Ji];

}

Contest Program

S./dft-n8-s3
the number of elements : 1024

the name of dataset :data_3.txt

Elapsed time on CPU (DFT) . 167.144287 [msec]
Elapsed time on CPU (IDFT) : 167.164734 [msec]
Elapsed time on GPU (DFT) . 1.763616 [msec]
Elapsed time on GPU (IDFT) : 1.693888 [msec]

94.773628 times faster on dft!!
94.785225 times faster on idft!!

Degree of similarity = 0.998622
correct !!

When this result is close to 1, the calculation is correcter

Options...
-n [1-8] : the number of elements
-s [1-3] : select data set

Elapsed time & acceleration ratio

Verify the results...
Compute the similarity
similarityis 1 ~ -1

Contest

* Minimum Requirement

e Accelerating DFT & IDFT by using GPU

* Modify only gpu_calc.cu
* Not have to execute all parts on GPU
* Initialization and verification supported by toolkit

* Advanced
e Optimization to achieve higher performance

Toolkit(Code)

e gpu_calc.cu
 DFT & iDFT program for GPU
* not implemented (please modify this file)

* gpu_calc.cpp
 DFT & iDFT program for CPU

» Refer to modify gpu_calc.cu

°* main.c
e |nitialize & call functions

How to use toolkit

make
* Compile

Jdft

* run your program with default parameter

Jdft =n [num] —s [num]

* run your program with selected parameter
Jdft —h

* Help

Deadline

* 8/3 24:00
* Leave your design on your account

* Mail to kaneda@am.ics.keio.ac.jp with a simple
report including:
e Result of speed up
* How did you try to improve the performance

 No submission, no unit.

* The contest results will be announced asap after
the deadline.

mailto:kaneda@am.ics.keio.ac.jp

Tips for parallel processing

* DFT is consisting of double loops.
* You should parallelize the outer loop first.

* For parallelize the inner loop, you should use
reduction calculation well.

