
Discrete Fourier Transform(DFT)

• DFT applies Fourier
transform to digitized
data.

• The signal is
transformed to time
domain to frequency
domain.

• IDFT is Inverse DFT.

DFT(1)

• Discrete Fourier Transform(DFT)
• Time domain→Frequency domain

• Inverse DFT (iDFT)
• Frequency domain→Time domain

𝑋 𝑘 =෎

𝑛=0

𝑁−1

𝑥 𝑛 ⅇ−𝑗
2𝜋
𝑁 𝑘𝑛

𝑥 𝑛 =
1

𝑁
෎

𝑘=0

𝑁−1

𝑋 𝑘 ⅇ𝑗
2𝜋
𝑁 𝑘𝑛

DFT(2)

• Apply Euler’s formula

• DFT

• iDFT

ⅇ−𝑗
2𝜋
𝑁 𝑘𝑛 = cos

2𝜋

𝑁
𝑘𝑛 − 𝑗 sin

2𝜋

𝑁
𝑘𝑛

𝑋 𝑘 =෎

𝑛=0

𝑁−1

𝑥 𝑛 cos
2𝜋

𝑁
𝑘𝑛 − 𝑗 sin

2𝜋

𝑁
𝑘𝑛

𝑥 𝑛 =
1

𝑁
෎

𝑘=0

𝑁−1

𝑋 𝑘 cos
2𝜋

𝑁
𝑘𝑛 + 𝑗 sin

2𝜋

𝑁
𝑘𝑛

DFT(3)

• Separation of Real Part and Imaginary Part

DFT

iDFT

𝑋𝑟𝑒 𝑘 =෎

𝑛=0

𝑁−1

𝑥𝑟𝑒 𝑛 cos
2𝜋

𝑁
𝑘𝑛 + 𝑥𝑖𝑚 𝑛 sin

2𝜋

𝑁
𝑘𝑛

𝑋𝑖𝑚 𝑘 = 𝑗෎

𝑛=0

𝑁−1

−𝑥𝑟𝑒 𝑛 sin
2𝜋

𝑁
𝑘𝑛 + 𝑥𝑖𝑚 𝑛 cos

2𝜋

𝑁
𝑘𝑛

𝑥𝑟𝑒 𝑛 =
1

𝑁
෎

𝑘=0

𝑁−1

𝑋𝑟𝑒 𝑘 cos
2𝜋

𝑁
𝑘𝑛 − 𝑋𝑖𝑚 𝑘 sin

2𝜋

𝑁
𝑘𝑛

𝑥𝑖𝑚 𝑛 = 𝑗
1

𝑁
෎

𝑘=0

𝑁−1

𝑋𝑟𝑒 𝑘 sin
2𝜋

𝑁
𝑘𝑛 + 𝑋𝑖𝑚 𝑘 cos

2𝜋

𝑁
𝑘𝑛

DFT(4)

• Separation of real part and imaginary part

DFT

iDFT

𝑋𝑟𝑒 𝑘 =෎

𝑛=0

𝑁−1

𝑥𝑟𝑒 𝑛 cos
2𝜋

𝑁
𝑘𝑛 + 𝑥𝑖𝑚 𝑛 sin

2𝜋

𝑁
𝑘𝑛

𝑋𝑖𝑚 𝑘 = 𝑗෎

𝑛=0

𝑁−1

−𝑥𝑟𝑒 𝑛 sin
2𝜋

𝑁
𝑘𝑛 + 𝑥𝑖𝑚 𝑛 cos

2𝜋

𝑁
𝑘𝑛

𝑥𝑟𝑒 𝑛 =
1

𝑁
෎

𝑘=0

𝑁−1

𝑋𝑟𝑒 𝑘 cos
2𝜋

𝑁
𝑘𝑛 − 𝑋𝑖𝑚 𝑘 sin

2𝜋

𝑁
𝑘𝑛

𝑥𝑖𝑚 𝑛 = 𝑗
1

𝑁
෎

𝑘=0

𝑁−1

𝑋𝑟𝑒 𝑘 sin
2𝜋

𝑁
𝑘𝑛 + 𝑋𝑖𝑚 𝑘 cos

2𝜋

𝑁
𝑘𝑛

DFT(5)
for(i = 0; i < num; i++){

for(j = 0; j < num; j++){

temp_re[i] += re[j]*cos(2*PI*i*j/num + flag*im[j]*sim(2*PI*i*j/num);

temp_im[i] += -flag*re[j]*sin(2*PI*i*j/num) + im[j]*cos(2*PI*i*j/num);

// if DFT, flag = 1, else if iDFT, flag == -1

}

if(iDFT){

temp_re[i] /= num;

temp_im[i] /= num;

}

}

for(i = 0; i < num; i++){

re[i] = temp_re[i];

im[i] = temp_im[i];

}

Contest Program

• $./dft -n 8 -s 3

• the number of elements : 1024

• the name of dataset : data_3.txt

• Elapsed time on CPU (DFT) : 167.144287 [msec]

• Elapsed time on CPU (IDFT) : 167.164734 [msec]

• Elapsed time on GPU (DFT) : 1.763616 [msec]

• Elapsed time on GPU (IDFT) : 1.693888 [msec]

• 94.773628 times faster on dft!!

• 94.785225 times faster on idft!!

• Degree of similarity = 0.998622

• correct !!

• When this result is close to 1, the calculation is correcter

Options…
-n [1-8] : the number of elements

-s [1-3] : select data set

Elapsed time & acceleration ratio

Verify the results…
Compute the similarity

similarity is 1 ～ -1

Contest

• Minimum Requirement
• Accelerating DFT & IDFT by using GPU

• Modify only gpu_calc.cu

• Not have to execute all parts on GPU

• Initialization and verification supported by toolkit

• Advanced
• Optimization to achieve higher performance

Toolkit(Code)

• gpu_calc.cu
• DFT & iDFT program for GPU

• not implemented (please modify this file)

• gpu_calc.cpp
• DFT & iDFT program for CPU

• Refer to modify gpu_calc.cu

• main.c
• Initialize & call functions

How to use toolkit

• make
• Compile

• ./dft
• run your program with default parameter

• ./dft –n [num] –s [num]
• run your program with selected parameter

• ./dft –h
• Help

Deadline

• 8/3 24:00

• Leave your design on your account

• Mail to kaneda@am.ics.keio.ac.jp with a simple
report including:
• Result of speed up

• How did you try to improve the performance

• No submission, no unit.

• The contest results will be announced asap after
the deadline.

mailto:kaneda@am.ics.keio.ac.jp

Tips for parallel processing

• DFT is consisting of double loops.

• You should parallelize the outer loop first.

• For parallelize the inner loop, you should use
reduction calculation well.

