Discrete Fourier Transform(DFT)

* DFT applies Fourier T
transform to digitized _f”“ln, p (,J“H ™ N[
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* The signal is P s —
transformed to time
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domain.

* IDFT is Inverse DFT.
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DFT(1)

* Discrete Fourier Transform(DFT)
* Time domain—->Frequency domain
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* Inverse DFT (iDFT)

* Frequency domain—>Time domain
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DFT(2)

* Apply Euler’s formula
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 IDFT
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DFT(3)

e Separation of Real Part and Imaginary Part
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DFT(4)

e Separation of real part and imaginary part
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DFT(5)

for(i = 0; i < num; i++){
for(j = 0; j < num; j++){
temp_reli] += re[j]*cos(2*PI*i*j/num + flag*im[j]*sim(2*PI*i*j/num);
temp_im[i] += -flag*re[j]1*sin(2*PI*i*j/num) + im[j]*cos(2*P1*i*j/num);
// if DFT, flag = 1, else if iDFT, flag == -1
}
if(iDFT){
temp_re[i] /= num;
temp_im[i] /= num;
}
}
for(i = 0; i < num; i++){
re[i] = temp_reJil;
im[i] = temp_im]Ji];

}



Contest Program

S./dft-n8-s3
the number of elements : 1024

the name of dataset :data_3.txt

Elapsed time on CPU (DFT) . 167.144287 [msec]
Elapsed time on CPU (IDFT) : 167.164734 [msec]
Elapsed time on GPU (DFT) . 1.763616 [msec]
Elapsed time on GPU (IDFT) : 1.693888 [msec]

94.773628 times faster on dft!!
94.785225 times faster on idft!!

Degree of similarity = 0.998622
correct !!

When this result is close to 1, the calculation is correcter

Options...
-n [1-8] : the number of elements
-s [1-3] : select data set

Elapsed time & acceleration ratio

Verify the results...
Compute the similarity
similarityis 1 ~ -1



Contest

* Minimum Requirement

e Accelerating DFT & IDFT by using GPU

* Modify only gpu_calc.cu
* Not have to execute all parts on GPU
* Initialization and verification supported by toolkit

* Advanced
e Optimization to achieve higher performance



Toolkit(Code)

e gpu_calc.cu
 DFT & iDFT program for GPU
* not implemented (please modify this file)

* gpu_calc.cpp
 DFT & iDFT program for CPU

» Refer to modify gpu_calc.cu

°* main.c
e |nitialize & call functions



How to use toolkit

make
* Compile

Jdft

* run your program with default parameter

Jdft =n [num] —s [num]

* run your program with selected parameter
Jdft —h

* Help



Deadline

* 8/3 24:00
* Leave your design on your account

* Mail to kaneda@am.ics.keio.ac.jp with a simple
report including:
e Result of speed up
* How did you try to improve the performance

 No submission, no unit.

* The contest results will be announced asap after
the deadline.


mailto:kaneda@am.ics.keio.ac.jp

Tips for parallel processing

* DFT is consisting of double loops.
* You should parallelize the outer loop first.

* For parallelize the inner loop, you should use
reduction calculation well.



