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Abstract—Network throughput has become an important issue
for big-data analysis on Warehouse-Scale Computing (WSC) sys-
tems. It has been reported that randomly-connected inter-switch
networks can enlarge the network throughput. For irregular
networks, a multi-path routing method called k-shortest path
routing is conventionally utilized. However, it cannot efficiently
exploit longer-than-shortest paths that would be detour paths to
avoid bottlenecks. In this work, a novel routing method called
k-optimized path routing to achieve high throughput is proposed
for irregular networks. We introduce a heuristic to select detour
paths that can avoid bottlenecks in the network to improve
the network throughput. Experimental results show that the
proposed k-optimized path routing can improve the throughput
by up to 133 % compared to the conventional k-shortest path
routing. Moreover, it can improve the network bandwidth while
maintaining the low network latency.

Index Terms—Interconnection Networks, Warehouse-Scale
Computing, Data Centers.

I. INTRODUCTION

Recently, the size of data centers for big-data processing
has grown rapidly. They form a new computer class called
warehouse-scale computers which will provide more than
hundreds of thousands of nodes. Conventional interconnection
networks for such a huge scale system is difficult to be formed
with economic commodity switches. Also, large throughput to
cope with a large request level parallelism is difficult to be
satisfied.

Novel-class random networks have been proposed for such
warehouse-scale computers. A ring network with random
short-cut links drastically reduces the latency between nodes
by the small-world effect [1]. Jellyfish [2] using a random
regular graph can achieve larger throughput than that of Fat-
Trees [3], which are commonly used in data centers. Since the
throughput is more important than latency for homogeneous
warehouse-scale computers, interconnection networks using
random regular graphs are useful.

Such random regular graphs ensure its large throughput by
multiple paths between nodes. However, the throughput is also
dependent on applied packet routing algorithms. Conventional
equal cost multiple paths routing (ECMP) [4] cannot make
use of the variety of paths in the random graph, and often
degrades the throughput. A routing algorithm called k-shortest
path routing [5] has been proposed to utilize high throughput
of random regular graphs. This method uses the shortest
k paths between two nodes, and achieves comparative or

better throughput than Fat-Trees using ECMP. However, as
the number of the paths grows, the table size is also increased.
Thus, there is some difficulty on the implementation for the
large size graph.

This paper explores methods for choosing multiple paths
with their number fixed to maximize the throughput. A
linear-programming model has been proposed for obtaining
the selection probability of paths which can maximize the
worst-case throughput [6]. On the other hand, we obtain
the maximum worst-case throughput when m paths (m is
sufficiently larger than k) are used between two nodes with
the linear-programming. Here, since the selection probability
of each path can be calculated, k paths with higher probability
can be selected. We propose k-optimized path routing, which
maximizes the worst-case throughput by using these k paths.

The rest of the paper is organized as follows. Sec-
tion II overviews conventional data center networks and high-
throughput routing methods. Section III shows a conventional
framework to find the optimum throughput. Section IV de-
scribes our novel high-throughput routing called k-optimized
path routing for irregular networks. In Section V, our proposed
method is evaluated for the network throughput. Section VI
shows network simulation results. Finally, we conclude this
paper and mention the future work in Section VII.

II. RELATED WORK

In this section, we review existing methods for measuring
the throughput of the networks and routing methods for
improving the throughput.

A. High-Throughput Large-Scale Networks

Large-scale data center networks generally use Fat-Tree
topologies [3], but it is disadvantageous in that there exist
many communication hotspots and most of the network is
underutilized [7]. One possible solution for eliminating such
bottlenecks is to design reconfigurable networks such as
optical wireless communications. However, they require high
costs, and thus they would not currently be reasonable.

DLN [1] and Jellyfish [2] apply random graphs [8] to
the topology of interconnection networks. Slim Fly [9] and
Xpander [10] are semi-optimal network topologies for given
the number of switches and the number of ports per switch.
The four networks above achieve balanced throughput for
arbitrary traffic and communication loads. In particular, the
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Fig. 1: Worst-case throughput achieved by k-shortest path
routing (64 nodes, degree of 4).

network topologies adopting random graphs are promising
because they make network sizes and the number of ports
flexible. By using a fluid-flow model, Jyothi et al. show that
such random topologies improve the throughput as compared
with Fat-Tree topologies if we use the optimal routing between
end nodes [11].

B. Maximizing Throughput by Routing

Wang et al. propose the multi-path routing algorithm called
SCRAT [12], which increase the bandwidth compared to the
conventional multi-path routing. However, SCRAT consid-
ers the bandwidth of an independent flow for each source-
destination pair and does not consider the multiple concurrent
flows among multiple source-destination pairs.

For Jellyfish, the k-shortest path routing is proposed to
improve the network throughput [2]. Yuan et al. propose
the limited length spread k-shortest path routing (LLSKR),
which improves the k-shortest path routing by more effectively
exploiting the path diversity [13].

Figure 1 shows the relationship between the throughput and
the number k of paths used in the k-shortest path routing with
64 4-degree nodes. We show here the worst-case throughput
for all of the possible traffic patterns. Obviously, the through-
put increases with the value of k.

The k-shortest path routing and LLSKR improve the com-
munication throughput by reducing the number of occupied
channels. On the one hand, longer-than-shortest paths increase
the number of occupied channels, and consequently they
decrease the throughput, as shown in [13]. On the other hand,
however, using longer paths instead of short paths may avoid
the bottleneck of specific channels along the short paths and
improve the network throughput.

This paper explores the use of longer-than-shortest paths
for improving the network throughput. More specifically, we
measure the path utilization when the network throughput for
all of the traffic matrices are maximized. We propose the
method for generating routing paths such that the network
throughput is maximized by exploiting longer-than-shortest
paths.

III. OPTIMIZATION OF WORST-CASE THROUGHPUT WITH
LINEAR PROGRAM

Static routing algorithm design can be modeled as a multi-
commodity flow problem (MCF). In this model, communica-

tion flows on the network so that the load on each channel
does not exceed a certain capacity.

In this work, we explore a method for generating multi-
ple paths to improve the network throughput. We use the
framework of the existing method [6] to find the worst-
case throughput under adversarial traffic. In the same way as
this framework, we provide some definitions about a routing
method and the network throughput.

A. Routing Algorithm

First, a static routing algorithm defines a set of paths
available in the network for each source-destination pair. To
describe a routing algorithm R, we let R(p) be the probability
that a packet uses the path p. Then, R can represent a valid
static routing algorithm as long as the following conditions
are satisfied. ∑

p∈Ps,d
R(p) = 1 ∀s, d ∈ N,

R(p) ≥ 0 ∀p ∈ P,

where P and Ps,d represent the set of all paths and the set of
paths between source s and destination d, respectively. Each
path is a simple path that eliminates any loop and any revisit
channel. This formulation creates a commodity flow for each
of the N2 source-destination pairs in the network.

B. Metrics for Measuring Network Throughput

Using the multi-commodity flow formulation introduced in
the previous section, several network metrics can be defined.
By our definition, the maximum throughput in a network
can sustain under a given traffic pattern. The throughput is
determined by the channel loads. That is, once the average
load on a channel reaches the channel’s capacity, that channel
is saturated. The first channel to saturate becomes a bottleneck
and thus determines the network’s throughput.

The expected number of packets that cross a particular
channel c per cycle, referred to as the load γc, is the sum
of the loads contributed by each source-destination pair. In
terms of the traffic matrix π and the routing algorithm R,

γc(R, π) =
∑

s,d∈N πs,d

∑
p:c∈p,
p∈Ps,d

R(p),

where πs,d is a binary value that represents whether commu-
nication exists for the (s, d)-pair. In the traffic matrix π, each
source node sends packets to exactly one destination node,
while each destination node receives packets from exactly one
source node. That is,

πs,d ∈ {0, 1} ∀s, d ∈ N,∑
d∈N πs,d = 1 ∀s ∈ N,∑
s∈N πs,d = 1 ∀d ∈ N.

We set the value of each channel’s capacity bc = 1, which
is the same across all channels in the network. By applying
the above formulations to each channel load, we define the
maximum channel load across the whole network as

γmax(R, π) = maxc∈C [γc(R, π)] .



This maximum channel load defines the maximum throughput
Θ(R, π) of the network under the traffic matrix π as

Θ(R, π) = γmax(R, π)−1.

Each source-destination pair can send and receive packets at
up this ratio of each channel’s capacity under the traffic matrix
π without saturating all channels in the network.

In the above formulations, the channel load γc is linear in
the routing algorithm R. Moreover, since it is the maximum
value in a set of γc for all channels, the maximum channel
load γmax is convex in R. The existing method [6] uses these
properties to establish a linear program that can obtain the
worst-case channel load for a routing algorithm R and an
arbitrary traffic matrix π.

C. Optimization of Throughput under Given Traffic π

The problem of designing a routing algorithm R with the
optimal throughput for a traffic matrix π can be expressed as
a linear program. The maximum channel load for R and π
is defined as γ(R, π). We introduce a new variable w that
maintains w ≥ γ(R, π). The value w is used as an objective
function in the following linear program:

minimize w
subject to

∑
p∈Ps,d

R(p) = 1 ∀s, d ∈ N,

R(p) ≥ 0 ∀p ∈ P,
γc(R, π) ≤ w ∀c ∈ C.

(1)

D. Optimization of Throughput under Adversarial Traffic
We also consider the problem of designing a routing algo-

rithm R with the optimal worst-case throughput under adver-
sarial traffic. In a similar way to Section III-C, the maximum
channel load for R under any traffic is defined as γwc(R). For
some channel c and traffic matrix π, γc(R, π) = γwc(R) is
satisfied. This equality induces a new variable w that satisfies
w ≥ γwc(R). This variable is used as an objective function in
the following linear program:

minimize w
subject to

∑
p∈Ps,d

R(p) = 1 ∀s, d ∈ N,

R(p) ≥ 0 ∀p ∈ P,
γc(R, π) ≤ w ∀c ∈ C, π ∈ Π,

where a set of traffic matrices Π is |N |-permutations for a set
of nodes N . The size of Π becomes |N |!, which make the
linear program difficult to solve in a practical time.

In order to reduce the number of constraints to a polynomial
number, the Lagrange dual function and the Birkhoff–von
Neumann theorem can be utilized [6]. We introduce new
variables v and u to reformulate the problem. The resulting
linear program is:

minimize w
subject to

∑
p∈Ps,d

R(p) = 1 ∀s, d ∈ N,

R(p) ≥ 0 ∀p ∈ P,∑
p:c∈p,
p∈Ps,d

R(p) ≤ vd,c − us,c ∀s, d ∈ N, c ∈ C,∑
d∈N vd,c −

∑
s∈N us,c = w ∀c ∈ C.

(2)
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Fig. 2: Example of path selection (m = 8, k = 3).

IV. GENERATING k-OPTIMIZED PATHS

In this section, we propose k-optimized path routing which
can replace the conventional k-shortest path routing. The pro-
posed method uses the linear program shown in the previous
section. As in the case of k-shortest path routing, k paths
are generated for each source-destination pair. In order to
determine the k paths, firstly m-shortest paths are generated,
where m is enough larger than k. k paths that can maximize
the throughput are then obtained from among the m paths.
Using m-shortest paths as inputs, a path search is performed
with the linear programming as the following procedures.

(i) For a set of available paths P , the maximum channel
load is calculated using the linear program. Depending
on whether traffic is given or not, the calculation is
performed as follows.

(A) The traffic-independent method calculates the maxi-
mum channel load under adversarial traffic using the
linear program (2) in Section III-D.

(B) The traffic-dependent method calculates the maximum
channel load under a given traffic π using the linear
program (1) in Section III-C.

(ii) The utilization ratio of each path is extracted in the
optimization result. The top k paths for each source-
destination pair are then selected from the m paths.

The top k paths may include longer-than-shortest paths that are
not in k-shortest paths. These paths can improve the network
throughput by using them as substitutes for the shortest paths
with low utilization.

Figure 2 shows an example of the path selection. The step (i)
obtains the channel loads when using m-shortest paths for each
source-destination pair. At the same time, the utilization ratio
of each path is calculated in the optimization. The step (ii)
extracts detour paths that can avoid bottlenecks. These paths
are included in k available paths to generate routing optimized
for the network throughput.

V. EVALUATION

The proposed k-optimized path routing introduced in Sec-
tion IV is compared with the conventional k-shortest path
routing. Gurobi [14] is used as a linear program solver. A



barrier method is used for the optimization method in the
linear program. Default values of parameters are as follows.
The number of paths to be searched is set to m = 10. The
number of paths finally used in routing is set to k = 3.

A. Evaluation Metrics

The proposed and conventional methods are evaluated for
the following two metrics.
(a) Network throughput is calculated with the linear pro-

grams shown in Section III.
(b) Average path length for each source-destination pair

achieved by routing is evaluated. We define the path
length of each source-destination pair as the summation
of weighted lengths of the available paths. We weight the
length of each path p with the utilization rate R(p) ex-
tracted from the optimization result. That is, the average
path length Havg(R) is defined as

Havg(R) =

∑
s̸=d

s,d∈N

∑
p∈Ps,d

R(p) · h(p)

|N | · (|N | − 1)
,

where the length of the path p is represented as h(p).

B. Traffic-Independent k-Optimized Path Routing

We evaluate the proposed k-optimized path routing that
is implemented based on the traffic-independent method (A)
shown in Section IV. The proposed and conventional methods
are applied to random regular graphs that have the same degree
of each node. The network size and degree are set to 64 and
8, respectively.

Figure 3 shows comparisons between the proposed and
conventional methods varying the parameter k (the number of
available paths in routing) with the fixed parameter m = 10.
Figure 3a shows that the proposed k-optimized path routing
achieves higher worst-case throughput than the conventional
k-shortest path routing. It can improve the throughput under
adversarial traffic by up to 17.5 %.

As described in Section IV, k-optimized path routing uti-
lizes longer-than-shortest detour paths to avoid bottlenecks.
These paths degrade the average path length, which can be
seen in Figure 3b. In this evaluation, the maximum rate of
the degradation is 3.4 %. Considering the results in Figure 3a,
k-optimized path routing modestly degrades the average path
length while drastically improves the network throughput by
utilizing longer-than-shortest detour paths.

Figure 4 shows comparisons between the proposed and
conventional methods varying the parameter m (the number
of paths to be searched) with the fixed parameter k = 3. When
increasing the number of paths to be searched m, ideally the
worst-case throughput is also increased. However, as shown
in Figure 4a, the value of the worst-case throughput becomes
the maximum when m = 7. The rate of the improvement
compared with the k-shortest path routing is 29.5 %.

When m > 7, the improvement rate is degraded to 20.7 %
as the value of m increases. This is because the proposed
method uses a simple heuristic that chooses paths with the

TABLE I: Network parameters.

Simulation period 10,000 cycles
Packet size 1 flit

Number of VCs 2
Buffer size per VC 8 flits

Number of pipeline stages 4
Escape path [15] up*/down* routing [16]

high utilization ratio obtained in the optimization result. The
paths used with high probability in m-shortest path routing are
not always the optimal paths to be selected as the k paths for
the maximum worst-case throughput. Improving the heuristic
for selecting k-optimized paths is one of our future works.

As shown in Figure 4b, the average path length is increased
by up to 3.5 % due to detour paths. However, at m = 7
where the worst-case throughput becomes the maximum, its
degradation rate remains at 2.1 %. Therefore, one of our future
works is also developing a method of searching for the value
m that can maximize the throughput while suppressing the
degradation of the average path length.

C. Traffic-Dependent k-Optimized Path Routing

We evaluate the proposed k-optimized path routing that is
implemented based on the traffic-dependent method (B) shown
in Section IV. As in Section V-B, the proposed and con-
ventional methods are applied to random regular graphs. The
network size and degree are set to 256 and 16, respectively.
Longest Matching traffic (LM) [11] is used as given traffic.

Figure 5 shows comparisons between the proposed and
conventional methods varying the parameter k with the fixed
parameter m = 10. Figure 5a shows that the k-optimized
path routing achieves higher throughput for LM traffic. It can
improve the throughput by up to 69.2 %.

Unlike the traffic-independent method shown in Sec-
tion V-B, the traffic-dependent method hardly degrades the
average path length with detour paths, as shown in Fig 5b.
The maximum rate of the degradation is 0.0016 %. Hence the
traffic-dependent k-optimized path routing can improve the
throughput while maintaining the low network latency.

Figure 6 shows comparisons between the proposed and
conventional methods varying the parameter m with the fixed
parameter k = 3. Figure 6a shows that the value of the
throughput becomes the maximum when m = 22. The rate of
the improvement compared with the k-shortest path routing is
133 %. For the same reason as the traffic-independent method
shown in Section V-B, the traffic-dependent method cannot
sustain the maximum throughput when m > 22.

Figure 6b shows that the average path length is increased
by up to 0.02 % due to detour paths. Similarly to Fig 5b,
the degradation rate is much smaller than that of the traffic-
independent method.

VI. NETWORK SIMULATION

A cycle-accurate network simulator Booksim [17] is used
for evaluation. Network parameters for the simulation are
shown in Tab. I. In order to avoid deadlocks, Duato’s pro-
tocol [15] is used. In this protocol, we adopt the up*/down*
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Fig. 3: Traffic-independent k-optimized path routing for 64 nodes with different k (m = 10).
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Fig. 4: Traffic-independent k-optimized path routing for 64 nodes with different m (k = 3).
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Fig. 5: Traffic-dependent k-optimized path routing for 256 nodes with different k (m = 10).
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Fig. 6: Traffic-dependent k-optimized path routing for 256 nodes with different m (k = 3).



routing [16] with the spanning trees optimization method [18]
as the escape paths.

In this evaluation, the proposed traffic-dependent and traffic-
independent k-optimized path routing methods are compared
with the conventional k-shortest path routing. The parameters
are set to m = 10 and k = 3. The evaluated network and its
size and degree for each method are the same as in Section V-B
and V-C. For the traffic-independent method, we use four
kinds of traffic: uniform, transpose, shuffle, and reverse. For
the traffic-dependent method, we use the following traffic: bit
complement, transpose, shuffle, and reverse.

Figure 7 shows the network performance of the traffic-
independent k-shortest path routing. As seen in this figure, re-
gardless of adopted traffic, the network bandwidth is improved
without optimizing for the traffic. The maximum improvement
rate is 14 %. This rate is smaller than the improvement rate of
the worst-case throughput shown in Figure 3a. This is because
Duato’s protocol induces another deadlock-free network layer
for up*/down* routing. That is, the result values of the
bandwidth are raised by that of the deadlock-free network. It
is also notable that k-optimized path routing achieves almost
the same network latency at the low accepted flit rate as the
conventional k-shortest path routing.

Figure 8 shows the network performance of the traffic-
dependent k-shortest path routing. As seen in this figure, the
network bandwidth is improved by optimizing for each given
traffic. The maximum improvement rate is 16 %. Moreover,
similarly to the traffic-independent method, it can achieve
almost the same network latency as the k-shortest path routing.

VII. CONCLUSION AND FUTURE WORK

In this work, we propose k-optimized path routing which
utilizes k paths for each source-destination pair to improve the
network throughput for low-latency random networks.

Conventional k-shortest path routing for random networks
improves the network throughput by increasing the number of
available paths k for each source-destination pair. However,
this method may decrease the network throughput when k is
small because it cannot use detour paths that would avoid
bottlenecks to improve the throughput.

In the proposed k-optimized path routing, a linear program
is exploited to calculate the utilization rate of m-shortest paths
when the throughput is maximized. Furthermore, the top k
paths with high utilization rate are used in the proposed routing
to maximize the network throughput for the limited number
of available paths k.

We implement both traffic-independent and traffic-
dependent k-optimized path routing. The traffic-independent
method can improve the worst-case network throughput under
adversarial traffic by up to 29.5 %. The traffic-dependent
method can also improve the throughput under traffic with
the longest paths by up to 133 %. Moreover, both of the
proposed methods can improve the network bandwidth while
maintaining the low network latency.

As future work, we will focus on improving the heuristic for
selecting k-optimized paths. We will also focus on developing

a method of searching for the value m that can maximize the
throughput while suppressing the degradation of the average
path length.
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(a) Uniform traffic.
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(b) Transpose traffic.
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(c) Shuffle traffic.
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(d) Reverse traffic.

Fig. 7: Network performance of traffic-independent k-optimized path routing for 64 nodes.
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(a) Bit complement traffic.
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(b) Transpose traffic.
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(c) Shuffle traffic.
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(d) Reverse traffic.

Fig. 8: Network performance of traffic-dependent k-optimized path routing for 256 nodes.


