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Abstract—Recently proposed irregular networks can reduce
the latency for both on-chip and off-chip systems with a large
number of computing nodes and thus can improve the perfor-
mance of parallel application. However, these networks usually
suffer from deadlocks in routing packets when using a naive
minimal path routing algorithm. To solve this problem, we focus
attention on a lately proposed theory that generalizes the turn
model to maintain the network performance with deadlock-
freedom. The theorems remain a challenge of applying themselves
to arbitrary topologies including fully irregular networks. In this
paper, we advance the theorems to completely general ones. To
apply the idea of the turn model to arbitrary topologies, we
introduce a concept of regions that define continuous directions
of channels on an n-dimensional space. Moreover, we provide
a feasible implementation of a deadlock-free routing method
based on our advanced theorem. To reduce the latency and the
number of required Virtual Channels (VCs) with this method,
a heuristic approach is introduced to reduce the number of
prohibited turns between channels. Experimental results show
that the routing method based on our proposed theorem can
improve the network throughput by up to 138 % compared to
a conventional deterministic minimal routing method. Moreover,
it can reduce the latency by up to 2.9 % compared to another
fully adaptive routing method.

Keywords—Interconnection Networks, Deadlock-free Routing
Algorithm, High Performance Computing, Irregular Networks,
Virtual Channels.

I. INTRODUCTION

To improve the performance of large parallel application,
low-latency and high-throughput interconnection networks are
essential as well as processing performance of computational
nodes [1], [2]. The performance on off-chip interconnection
networks is usually dominated with delay in switching fabrics
(e.g., about a hundred nano-seconds in Infiniband QDR) rather
than in a link and for injection. Therefore, researchers have
recently focused attention on low-latency networks with high-
radix switches, which can be modeled as small-diameter
topologies with large degrees [3]–[5].

Meanwhile, other recent approaches have shown that ir-
regular topologies adopted in inter-switch networks can sig-
nificantly reduce the end-to-end latency [6]–[8]. Moreover,
small-diameter topologies with arbitrary network sizes are
known to usually have irregular structure [9]. These networks
can contribute to reduce the latency and thus to improve
the performance of parallel application not only for off-chip

networks but for on-chip inter-core networks with low-radix
routers [10], [11].

To adopt these networks for practical use, routing algorithms
have to guarantee deadlock-freedom in packet transfer. This is
because they cannot naively utilize the conventional routing
algorithms such as the dimension order routing for k-ary n-
cube topologies nor the routing with node labeling for fat-
tree topologies. To ensure deadlock-free irregular networks,
the channel dependency graph (CDG), derived from the usage
of channels with packets, has to be acyclic [12], [13]. To
achieve this objective, conventional routing methods often face
a trade-off among the required buffer size to implement Virtual
Channels (VCs), the achieved latency, and the throughput.

In this work, we propose a novel theorem, called HiRy1,
to design deadlock-free adaptive routing methods for arbitrary
network topologies. The theorem is developed from a lately
proposed routing theory called EbDa [14], generalization of
the turn model [15] for n-dimensional topologies such as
Mesh and k-ary n-cube topologies. We introduce a concept
of regions to define continuous directions of channels to make
the idea of the turn model applicable to arbitrary topologies
that may include diagonal links.

We also provide a feasible implementation of a topology-
agnostic routing algorithm based on our advanced theorem
HiRy. Note that this method is one of the possible implemen-
tations based on HiRy. Other possible implementations may
further improve the network performance compared to our
implementation. As the turn model or EbDa, HiRy outlines
a routing policy to guarantee deadlock-freedom rather than
provides a deadlock-free routing method itself.

The rest of the paper is organized as follows. Sec. II
overviews the theorems of EbDa with an example of applying
them to a conventional routing method based on the turn
model. Sec. III describes our advanced theorem applicable to
arbitrary topologies. In Sec. IV, we provide a new deadlock-
free routing algorithm for irregular networks based on our
theorem. Sec. V shows evaluation of our provided routing
method and comparison with conventional routing methodolo-
gies. Finally we conclude this paper and mention the future
work in Sec. VI.

1The name HiRy is derived from the first two letters of the last author’s
first name and those of the first (or the second) author’s.
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Fig. 1: An example of Turn model (West-First routing).

II. RELATED WORK

Dally’s theory [12] confirms that deadlock-freedom in a
network is guaranteed if the channel dependency graph (CDG)
induced by the usage of channels with packets is acyclic.
Based on this theory, several topology-agnostic deterministic
and adaptive routing algorithms have been proposed [16]–[20].
The deadlock-freedom of these algorithms has to be confirmed
with an exhaustive cycle dependency check for the topology.
This lacks their scalability for an arbitrary network especially
with a large network size.

The turn model [15] focuses on directions of channels in
n-dimensional Mesh and k-ary n-cube topologies to design
deadlock-free adaptive routing for these topologies. Fig. 1a
shows an example of the turn model, called the West-First
routing. This model shows that any loop is avoided by prohibit-
ing a portion of turns. Various routing methods [21], [22] based
on this model can be applied with high scalability because the
prohibited turns are independent of the network structure and
the network size. However, they still need rigorous proofs that
the channel dependency graphs do not include any cycle.

A lately proposed theory, called EbDa [14], also focuses on
the channel directions in Mesh and k-ary n-cube topologies
to design deadlock-free routing, but verifies the deadlock-
freedom without completely relying on Dally’s theory. It in-
stead utilizes a partitioning strategy for the channel directions
to form an acyclic channel dependency graph. We can illustrate
the theorems with the following example of applying them to
the West-First routing in a 2D Mesh topology. Let all of the
links in the topology be classified according to their directions;
i.e., they are grouped into N, S, E, and W links. Fig. 1a shows
that the West-First routing prohibits turns from N or S links to
W links to break both clockwise and counter-clockwise loops.
It is notable that sets of directions {E, N} and {E, S} can be
used in arbitrary orders within each set, while {W, N} and
{W, S} cannot.

Fig. 1b shows that the directions that packets can use
arbitrarily and repeatedly can be arranged into a group, which
is called a partition in EbDa. In the case of the West-First
routing, the two groups {W} and {N, E, S} are generated. The

solid arrows in the figure denote the permitted turns between
the directions. Moreover, the theorems in EbDa confirm that an
additional turn from S to N can be permitted without causing
any deadlock. The permitted and prohibited turns between
N and S are represented as the doublet and dotted arrows,
respectively. A transition between the two partitions in Fig. 1c
represents the permitted turns from W to any other direction.
The channels in each partition can be used arbitrarily and
repeatedly except for the 180-degree turn from N to S in the
partition 2.

The deadlock-freedom can be confirmed intuitively with this
partitioning model. Fig. 1d shows an example of a path with
the routing. Removing loops to avoid deadlock is demonstrated
with the following three limitations in routing packets.

1) Packets injected to the source node use the W direction
before the turn to the S direction. This turn corresponds
to the transition from the partition 1 to the partition 2
in Fig. 1c. After the turn the packets cannot use the W
direction again because it means the wrong transition.
This uni-directional transition avoids any loop between
the partitions {W} and {N, E, S}.

2) After the transition, the packets have to move towards
the eastern direction infinitely for the horizontal coor-
dinate axis. It means that there are no loops for the
horizontal movement within the latter partition.

3) In addition, the vertical movement of the packets cannot
close any loop because of the prohibited 180-degree turn
from N to S in the latter partition.

These three limitations for deadlock-freedom correspond to
the following three theorems introduced in EbDa, respectively.

1) No cycles are formed with transitions in an ascending
order among strictly ordered partitions that do not share
any common channel with each other.

2) A partition is loop-free if the number of axes, whose
positive and negative directions exist in the partition, is
at most one.

3) A partition maintains its deadlock-freedom if the chan-
nels, which are parallel with the axis including positive
and negative directions mentioned above, are used in a
strict order.

It is notable that in the case of the West-First routing in
Fig. 1, the vertical channels are ordered as (S, N) to satisfy
the condition in the third theorem.

The difference of this work from EbDa is that (1) our
theorem HiRy can be applied to arbitrary topologies while
the theorems in EbDa cannot, and that (2) we implement
a possible routing method based on HiRy and evaluate the
performance, while EbDa does not introduce a new routing
method. In this work, a concept of regions is introduced
to define continuous directions of channels. The partitioning
strategy is then applied to the regions instead of directions
of coordinate axes as in EbDa. We also introduce a heuristic
search for our implemented routing method based on HiRy
to reduce the latency and the number of required VCs. The
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Fig. 2: Channel direction mapped on n-sphere (n = 2).

Fig. 3: Negative, zero, and positive coordinates on axis Ai.

performance is evaluated and compared to that of conventional
topology-agnostic routing methods.

III. THEORY TO DESIGN DEADLOCK-FREE ROUTING FOR
ARBITRARY TOPOLOGIES

A. Assumptions

Unlike EbDa, channels in the topologies developed on an
arbitrary n-dimensional space can be implemented as diagonal
ones; that is, they do not have to be arranged in parallel to
any of the n coordinate axes. The other assumptions are the
same as in EbDa. Wormhole switching networks are assumed
while the HiRy theorem also can be applied to virtual cut
switching and store-and-forward switching networks. Packets
with arbitrary length are routed on the networks. The number
of Virtual Channels (VCs) in a physical channel can be an
arbitrary positive integer. Moreover, the VCs are treated as
disjoint channels even if they are on the same physical channel.

B. Definitions

We introduce an n-sphere2 centered at the origin in the n-
dimensional space and map a direction of a channel to a point
on the n-sphere. Fig. 2 shows an example of the mapping.
In this example, the direction of the channel from the node
(1, 1) to (2, 3) is mapped to the point on the 2-sphere (i.e.,
the circle) in the first quadrant. Note that the circular arc in
the quadrant is labeled as {X+, Y +}. This labeling manner is
defined hereinafter.

A coordinate space of an axis Ai is divided into negative,
zero, and positive coordinates, which are denoted as A−

i , A
0
i ,

and A+
i , respectively (Fig. 3). By using this division recur-

sively for all axes, the n-dimensional space can be split into
3n parts. The n-sphere exists on all of the parts except for the
origin. Therefore, the following lemma is completed.

Lemma. An n-sphere can be divided into 3n−1 regions with
the division of each axis.

2In this work, an n-sphere is defined as generalization of a circle that
overlies an n-dimensional space; e.g., a 2-sphere and a 3-sphere denote a
circle and a sphere, respectively.
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(a) Regions on 2-sphere. (b) Regions on 3-sphere.

Fig. 4: Regions on 2D- and 3D-surfaces.
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(b) Permitted regions for
2D networks with prohibited
180-degree turns between
{X−, Y 0} and {X+, Y 0}.

Fig. 5: Examples for proof of Lem. 1.

A region in the n-sphere is defined as a set of the coor-
dinates for all axes, where each coordinate is either negative,
zero, or positive one that is defined above. For example, the
region in the first quadrant on the 2-sphere is described as
{X+, Y +} as shown in Fig. 4a. The 2-sphere can be divided
into the following 8 regions.

• 4 regions in one of the quadrants denoted as circular arcs.
• the other 4 regions on the X or Y axis denoted as vertices.

Similarly, as shown in Fig. 4b, the 3-sphere can be divided
into the following 26 regions.

• 8 regions in one of the octants denoted as curved surfaces.
• 12 regions in one of the quadrants on the XY, YZ, or ZX

coordinate space denoted as circular arcs.
• 6 regions on the X, Y or Z axis denoted as vertices.
In the same way as EbDa, a partition is introduced as a

set of channels that packets can use arbitrarily and repeatedly
except for 180-degree turns. Note that the 180-degree turn
is defined as packet transfer between the two channels that
have the opposite directions in the n-dimensional space from
each other. In this work, we define the partition as a set of
the regions that represent continuous directions of channels.
Unlike EbDa, this definition can treat diagonal links in the
n-dimensional space.

C. Theorem for Deadlock-freedom in Arbitrary Topologies

Lemma 1. A partition is deadlock-free if the number of axes,
whose positive and negative coordinates exist in one of the
regions in the partition, is at most one.

Proof. The deadlock-freedom is supported if the acyclic chan-
nel dependency graph (CDG) is formed with packet transfer.
Let A be a set of all axes in the n-dimensional space and
Ac be the axis such that the positive and negative directions
can be taken in the partition. For an axis Aic ∈ A \{Ac},
packets always have to move in a uni-direction of either the
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(a) Example of achieved path.

(b) Permitted regions for
2D networks with prohibited
turn from {X−, Y 0} to
{X+, Y 0}.

Fig. 6: Examples for proof of Lem. 2.

positive or the negative direction. Therefore, any loop among
the channels cannot be formed for these axes. Routing packets
along the axis Ac also cannot form any loop because all 180-
degree turns are prohibited by default.

Fig. 5a illustrates an example of an achieved path with a
partition that prohibits 180-degree turns. It can avoid loops in
the way as described in the proof.

Another example of a partition for a 2-dimensional network,
in which the positive and negative coordinates can be taken for
the X axis, is shown in Fig. 5b. In this example, the partition
includes five regions of {X−, Y 0}, {X−, Y +}, {X0, Y +},
{X+, Y +}, and {X+, Y 0}. Additionally, it prohibits all 180-
degree turns along the X axis (i.e., those between {X−, Y 0}
and {X+, Y 0}). We can apply the proof of Lem. 1 with
replacements of A = {X, Y} and Ac = X. Note that the
axis Ac is hereinafter referred as a complete axis.

Lemma 2. Let us consider a portion of the channels that are
lying on one of the straight lines aligned with the complete
axis Ac. If they can be ordered strictly for all of the lines and
all packets use the channels in the order within a partition
that satisfies the condition of Lem. 1, the partition maintains
its deadlock-freedom.

Proof. When the channels on one of the straight lines parallel
with Ac are used in the strict order, we can confirm that the
dependencies among them keep acyclic by using topological
sort [23]. When this condition is satisfied for all of the lines,
this relaxation of the condition in Lem. 1 does not cause any
additional loop among all of the channels in the network.

Fig. 6a illustrates an example of an achieved path with a
partition that prohibits a 180-degree turn from A−

c to A+
c . The

channels parallel to the axis of Ac cannot cause any loop in
the use order for the axis Aic ∈ A \{Ac} because packets
have to move in a uni-direction for this axis. They also cannot
cause any loop in the use order along the axis of Ac because
of the prohibited 180-degree turn.

Fig. 6b shows an example of a partition for a 2-dimensional
network, whose configuration is the same as in Fig. 5b except
for permitting a turn from {X+, Y 0} to {X−, Y 0}. Lem. 2
can be applied to this partition and therefore it keeps its
deadlock-freedom. Although we consider networks with a
single VC for each physical channel in the above examples,
the theorem can also be applied to networks with multiple VCs

Partition 1 Partition 2

transition

Fig. 7: Ordered partitions including permitted regions of
channel direction.

(a) Permitted turns
from channels with
northern directions.

(b) Permitted turns
from channels with
southern directions.
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Fig. 8: South-Last routing with diagonal links [10].

for each physical channel by ordering the virtual channels and
following the order in the packet transfer.

Theorem (HiRy). Let us assume a set of partitions that do
not share any common region with each other. Additionally, we
assume that each partition satisfies the condition in Lem. 1 and
any 180-degree turn in each partition is achieved following
the condition in Lem. 2. If these partitions are ordered strictly
and the channels of the partitions are used in the order, the
deadlock-freedom is guaranteed.

Proof. Dependencies among the partitions do not form any
cycle when following the order. Each region in the network
belongs to at most one of the partitions. This leads to no loops
formed in dependencies among the channels in the different
partitions. Since the loop-freedom is supported within each
partition with Lem. 1 and Lem. 2, the deadlock-freedom is
supported as a whole.

Fig. 7 shows an example of a transition between disjoint
partitions. Since no regions are shared between the partition 1
and 2, any channel is also not shared between them. In
the same way as EbDa, the transition among these disjoint
partitions does not disturb the deadlock-freedom.

D. Case Study

In this section, we apply the HiRy theorem to a conventional
topology-agnostic deadlock-free routing method for on-chip
networks [10]. This method called the South-Last routing is
proposed for networks based on 2D Mesh topologies with
randomly connected shortcut links. The routing policy is
described as follows.

1) As shown in Fig. 8a, it permits arbitrary turns from the
channels with W, NW, N, NE, and E directions except
for a 180-degree turn from W to E.



Algorithm 1 Generating partitions and their order
Input: Dimension of network n, # of Virtual Channels (VCs) v,

Network G = (N,C), satisfying N ⊂ Rn and C ⊆ N2

Output: Ordered partitions P = (P1, P2, · · · , Pv·2n−1)
Set of axes A={A1, A2, · · · , An}
/* Partition for each VC */
Ac ← {A1, A2, · · · , An}
for 1 ≤ i ≤ v do

if Ac = ϕ then
Ac ← {A1, A2, · · · , An}

end if
Randomly pick Ac out of Ac

Generate set of partitions Pi

with axes A and complete axis Ac given (See Alg. 2)
end for
Merge sets of partitions {Pi | 1 ≤ i ≤ v}
into set of partitions P
Sort partitions P into P with network G given (See Alg. 3)

2) As shown in Fig. 8b, it permits turns from the channels
with SW, S, and SE directions only to the channels with
the same three directions.

Although Fig. 8a and 8b show diagonal links forming 45-
degree angles from the X or Y axis, they can take arbitrary
angles unless they are parallel to one of the axes.

We can use the approach of the HiRy theorem in the
following way. As in Sec. II, we can generate two partitions of
{W, NW, N, NE, E} and {SW, S, SE} shown in Fig. 8c. The
transition is permitted from the former partition to the latter.
The 180-degree turn from E to W is permitted, while the turn
from W to E is prohibited. As a result, the partitions and their
order completely matches those shown in Fig. 7.

IV. DEADLOCK-FREE ADAPTIVE ROUTING BASED ON
HIRY THEORY

In this section, we provide a feasible implementation of
a deadlock-free routing method based on the HiRy theorem
introduced in Sec. III. The dimension of a network n and the
number of VCs v for each physical channel are assumed as
given inputs. We also assume the given network G = (N,C)
arranged on the n-dimensional space, where N and C rep-
resent a set of nodes and a set of uni-directional channels,
respectively. Based on our new theorem, partitions each of
which contains regions are generated and ordered. Packets are
routed with permitted turns provided by the ordered partitions.

A. Overview of the Algorithm to Generate Ordered Partitions

Alg. 1 shows the main algorithm to generate ordered parti-
tions, which consists of the following two parts.

1) Generating partitions: The partitions are generated for
each VC (See Sec. IV-B) to put VCs in the same physical
channel into the different partitions from each other,
which can generate a maximum number of partitions.
We also set the complete axis Ac for each VC to put as
many regions in each partition as possible. The complete
axis Ac is changed for each VC to provide variation in
the generated partitions for all VCs and thus to achieve
better optimization in the sorting part shown below.

Algorithm 2 Generating Partitions in a VC

Input: Axes A = {A1,A2, · · · ,An} (n ≥ 2),
Complete axis Ac ∈ A

Output: Set of partitions P = {P1, P2, · · · , P2n−1}
Incomplete axes Aic = A \{Ac}
Incomplete indices Iic = {i |Ai ∈ Aic}
Set of non-zero coordinates on Ai Ai = {A−

i , A
+
i }

Set of empty partitions P = {P1, P2, · · · , P2n−1}
/* (1) orthant regions */
Rorth = {Set(R) | R ∈

∏
i∈Iic
Ai}

for 1 ≤ j ≤ n do
Pick Rorthj out of Rorth

for A∗
c ∈ {A−

c , A
0
c , A

+
c } do

Pj .add({A∗
c} ∪Rorthj )

end for
end for
/* (2) boundary regions */
for Abnd ∈ Power(Aic)\{ϕ,Aic} do

Ibnd = {i |Ai ∈ Abnd}
Rbnd = {Set(R′) | R′ ∈

∏
i∈Ibnd

Ai}
for Rbnd ∈ Rbnd do

Pbnd = {Pj |Rorthj ⊃ Rbnd}
Randomly select Pbnd from Pbnd

Rzero = {A0
i | i ∈ Iic \ Ibnd}

for A∗
c ∈ {A−

c , A
0
c , A

+
c } do

Pbnd.add({A∗
c} ∪Rbnd ∪Rzero)

end for
end for

end for
/* (3) regions of uni-directions in complete axis Ac */
Randomly sample (Ppos, Pneg) from P
Ric zero = {A0

i | i ∈ Iic}
Ppos.add({A+

c } ∪Ric zero)
Pneg.add({A−

c } ∪Ric zero)

2) Merging sets of partitions for all VCs and sorting them:
We introduce a heuristic approach (See Sec. IV-C)
to generate their order that ensures all source-and-
destination pairs reachable and that achieves as the small
average minimal path length as possible.

B. Generating Partitions for each VC

Partitions including regions are generated based on the HiRy
theorem in Alg. 2. In order to put as many regions into each
partition as possible, initially 2n−1 partitions are generated.
Note that the number 2n−1 is derived from the number of
orthants in the (n−1)-dimensional space constructed with the
given axes except for the complete axis Ac. The following
three kinds of regions are added to the 2n−1 partitions.

1) Orthant regions: For each partition, a region located
on the corresponding orthant is added. Note that the
region does not contain a zero-coordinate for any of the
incomplete axes Aic.

2) Boundary regions: They are defined as the regions
that multiple orthants are adjacent to in the (n − 1)-
dimensional space. Each of them is added to one of the
partitions that include one of the neighboring orthant
regions. Note that these regions exceptionally do not
include regions of uni-directions in the complete axis
Ac, which are described subsequently.
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Fig. 9: Generated partitions for a VC.

3) Regions of uni-directions in the complete axis Ac: These
two regions are individually added to the different par-
titions from each other. This is because of the following
reason. If these are added to the same partition, we have
to limit the use of 180-degree turns along the axis Ac

as described in Lem. 2.
In Alg. 2, Power( ) and

∏
denote the power set and the

Cartesian product of sets, respectively. Moreover, Set( ) is
defined as conversion from an ordered tuple to unordered one.

In the example for 2-dimensional networks in Fig. 9a, the
following two partitions are generated.

• P1 = {{X−, Y 0}, {X−, Y +}, {X0, Y +}, {X+, Y +}}
• P2 = {{X+, Y 0}, {X+, Y −}, {X0, Y −}, {X−, Y −}}

In the figure, the following sets of regions are represented as
circular arcs.

• {{X−, Y +}, {X0, Y +}, {X+, Y +}}
• {{X+, Y −}, {X0, Y −}, {X−, Y −}}

These two sets correspond to (1) the orthant regions; that is,
the two partitions for the coordinates of Y + and Y − are
generated. In the case of the 2-dimensional space, (2) the
boundary regions do not exist and thus they are not added.
Furthermore, the regions of {X−, Y 0} and {X+, Y 0} are
added to the partitions P1 and P2, respectively, as (3) the
regions in the complete axis.

Similarly, the following four partitions are generated for 3-
dimensional networks as shown in Fig. 9b.

• P1 = {{X+, Y +, Z−}, {X+, Y +, Z0}, {X+, Y +, Z+},
{X+, Y 0, Z−}, {X+, Y 0, Z0}, {X+, Y 0, Z+}}

• P2 = {{X+, Y −, Z−}, {X+, Y −, Z0}, {X+, Y −, Z+},
{X0, Y 0, Z−}}

• P3 = {{X−, Y −, Z−}, {X−, Y −, Z0}, {X−, Y −, Z+},
{X0, Y −, Z−}, {X0, Y −, Z0}, {X0, Y −, Z+}}

• P4 = {{X−, Y +, Z−}, {X−, Y +, Z0}, {X−, Y +, Z+},
{X0, Y +, Z−}, {X0, Y +, Z0}, {X0, Y +, Z+},
{X−, Y 0, Z−}, {X−, Y 0, Z0}, {X−, Y 0, Z+},
{X0, Y 0, Z+}}

In the figure, (1) the orthant regions are denoted as curved
surfaces; e.g., the following orthant regions are added to
P1: {X+, Y +, Z−}, {X+, Y +, Z0}, {X+, Y +, Z+}. Further-
more, (2) the boundary regions are denoted as circular
arcs; e.g., the following boundary regions are added to P1:
{X+, Y 0, Z−}, {X+, Y 0, Z0}, {X+, Y 0, Z+}. Note that they

�
�

� �

some (s, d) 

unreachable!

all (s, d) reachable

Fig. 10: Best-first search for appropriate order of partitions.

Algorithm 3 Sorting Partitions

Input: Set of partitions P = {P1, P2, · · · , P|P|(=v·2n−1)},
Network G = (N,C), satisfying N ⊂ Rn and C ⊆ N2

Output: Ordered partitions P = (P ′
1, P

′
2, · · · , P ′

|P|(=v·2n−1))
MAX ITERATION ← 1, 000
Set of temporary partition orders T = {()}
iiter ← 0
while T ̸= ϕ and iiter <MAX ITERATION do

iiter ← iiter + 1
Pick T out of T that maximizes # of reachable (s, d)-pairs,
breaking ties with ASPL achieved with T in ascending order
if All (s, d)-pairs in G reachable with T and |T | = |P| then

Return T as P
else

for all {P | P ∈ P ∧ P /∈ Set(T )} do
T ′ = copy of T
Insert P to head of T ′

T.add(T ′)
end for

end if
end while
/* No valid partition order found with iterative search */
Raise ERROR

can be alternatively added to the neighboring partitions; e.g.,
the regions mentioned above can be added to P2 instead of P1.
(3) The regions of the complete axis are denoted as vertices;
e.g., {X0, Y 0, Z−} is added to P2.

C. Sorting Partitions

After generating the sets of partitions for all VCs, they are
merged and sorted for the given network G. Alg. 3 shows our
implementation of sorting partitions.

In order to support all (s, d)-pairs in the network reachable,
we adopt a heuristic best-first search to find the order of the
partitions that ensures all (s, d)-pairs reachable. An example
of the search is illustrated in Fig. 10. Each vertex in the tree
represents temporary ordered partitions. Initially the tree has
only one empty vertex as a root vertex. For each iteration,
a visited vertex T is selected among unvisited vertices that
maximizes the number of reachable (s, d)-pairs. If there are
some ties, they are broken with the average minimal path
length in an increasing order. The search is continued by
adding children vertices of T for all of the rest partitions.
Each child vertex is generated by copying T and inserting
each one of the rest partitions to the head of the copy. If the



H

H

P
3

P
1

P
2

P
3

P
4

M

priority

LL

Fig. 11: Output VCs to be requested and their priority.

visited vertex T includes all of the partitions in P and there
exist some unreachable (s, d)-pairs, the vertex T is discarded
and the search is continued by going back to another vertex of
the tree. On the other hand, if T includes all of the partitions
and ensures all (s, d)-pairs reachable, T is returned as ordered
partitions P . In this work the number of the iteration is limited
to 1,000 to reduce the computational complexity.

D. Routing Packets

Packets can adaptively use multiple minimal paths that
are available with the partitions and their ordering between
source and destination nodes. Although they can also use non-
minimal paths, we do not recommend using them because they
cause degradation in the throughput and the latency depending
on the given networks and traffic patterns.

When the packets request allocation for multiple output VCs
that induce the minimal paths, the adaptivity can be improved
by giving priority to the VCs in the order of the corresponding
partitions. Fig. 11 shows an example of requested output VCs
and their priority. In this example, the central node has three
output VCs inducing minimal paths for a destination node
d represented as thick arrows. They belong to the partitions
P2, P3, and P4 from the top. Let a packet, whose destination
node is d, arrive at the node. When the packet arrives from
the input VC that belongs to the partition P1, represented as
the dotted arrow at the lower left, it can use all of the three
output VCs according to the partition order. The packet then
requests allocation for the three VCs giving higher priority to
the partition with a smaller index, as shown in the figure with
the characters H (High), M (Middle), and L (Low) enclosed
with dotted circles at the right. On the other hand, the packet
from the input VC that belongs to the partition P3, represented
as the dotted arrow at the upper left, cannot use the output VC
in the partition P2 because of the partition order. That is why
the packet requests for the two VCs in the partitions P3 and
P4, giving higher priority to that in P3.

The deadlock-freedom is confirmed as follows. The regions
in each partition satisfy the condition in Lem. 1. Moreover,
there are no 180-degree turns in each partition that are
mentioned in Lem. 2. This is because the two regions of the
complete axis are added to the different partitions from each
other. In addition, the partitions are ordered and are used in
the order to satisfy the condition in the theorem of HiRy.

Algorithm 4 Calculating minimal number of required VCs
Input: Dimension of network n,

Network G = (N,C), satisfying N ⊂ Rn and C ⊆ N2

Output: Minimal number of required Virtual Channels (VCs) vmin

vmin ← 0
do

vmin ← vmin + 1
Try to generate ordered partitions P
with n, vmin, and G given (See Alg. 1)

while P ensuring all (s, d)-pairs in G reachable not generated
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Fig. 12: Number of required Virtual Channels for 64 nodes.
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Fig. 13: Number of required Virtual Channels for 256 nodes.

V. EVALUATION

In this section, the implemented routing method based on
HiRy is evaluated and compared with conventional topology-
agnostic routing methods. In this evaluation, routing methods
are applied to random regular topologies. The degree of each
node is denoted as deg(G); that is, the number of bi-directional
links for each node is equal to deg(G). The value deg(G) is
the same for all nodes in the network G.

The routing method is applied to 64- and 256-node random
regular topologies. These topologies are developed on the
following coordinate spaces.

• 64 nodes: 8× 8 (n = 2), 4× 4× 4 (n = 3)
• 256 nodes: 16× 16 (n = 2), 8× 8× 4 (n = 3),

4× 4× 4× 4 (n = 4)
The nodes are arranged on the lattice positions in each space.

A. Minimal Number of required VCs

In this section, the minimal number of Virtual Channels
required to ensure all (s, d)-pairs in G reachable is evaluated.
The degree of each node, deg(G), is varied from 3 to 16
for 64 nodes, and from 4 to 32 for 256 nodes. For each
(|N |,deg(G))-pair, 10 random topologies are generated to get
the maximum, minimum, and average numbers of required
VCs, where |N | represents the number of nodes. To calculate
the minimal number of required VCs, the number of VCs vmin

is incremented to achieve Alg. 1 repeatedly until a partition



 1

 1.1

 1.2

 1.3

 1.4

 6  8  10  12  14  16N
o

rm
a

liz
e

d
 p

a
th

 l
e

n
g

th

Degree

8x8_max
4x4x4_max

(a) Maximum.

 1

 1.01

 1.02

 1.03

 6  8  10  12  14  16N
o

rm
a

liz
e

d
 p

a
th

 l
e

n
g

th

Degree

8x8_avg
4x4x4_avg

(b) Average.

 1

 1.5

 2

 2.5

 6  8  10  12  14  16N
o

rm
a

liz
e

d
 p

a
th

 l
e

n
g

th

Degree

8x8_SF
4x4x4_SF

(c) Stretch Factor.

Fig. 14: Normalized path lengths for 64 nodes with 2 VCs.
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Fig. 15: Normalized path lengths for 256 nodes with 2 VCs.

order P , ensuring all (s, d)-pairs reachable, is generated, as
shown in Alg. 4.

For 64 nodes, the maximum numbers of required VCs in
the case of deg(G)= 3 are 4 for the 8 × 8 topology and 6
for the 4 × 4 × 4 topology, as shown in Fig. 12a and 12b,
respectively. From these results, it can be seen that when a
network with small degrees is developed in a space of a large
dimension, it requires relatively many VCs to make all (s, d)-
pairs reachable. This is because the large dimension divides the
channels in the network into many partitions, each of which
includes relatively a small number of available directions of
the channels because of the small degree.

Similarly, for 256 nodes, the maximum number of required
VCs for the 16×16 topology is 3, while those for the 8×8×4
and 4× 4× 4× 4 topologies are both 5, as shown in Fig. 13.
Moreover, the minimal numbers of the degree that achieve the
number of required VCs equal to 2 is 7, 8 and 10 for the
16× 16, 8× 8× 4, and 4× 4× 4× 4 topologies, respectively.
On the other hand, the required number of VCs can be equal
to 1 in the case of deg(G) ≥ 22 for the 4×4×4×4 topology.
This is because in this case there are relatively many partitions
that include a large number of channels, which leads to high
reachability of packets.

The proposed method based on HiRy can be applied to
completely irregular networks with a moderate value of the
dimension n. This is because the increase of n exponentially
affects both the increase in the number of partitions and the
decrease in the average number of channels in each partition,
and thus neutralizes the significant decrease of v and the
increase of deg(G). In addition, it is important to select the
appropriate dimension n in order to keep a good balance
between the number of partitions and the number of channels
in each partition to reduce the number of required VCs. To
develop a new methodology to get an optimal dimension n is
left for our future work.

TABLE I: Network parameters.

Simulation period 100,000 cycles
Packet size 1 flit

Number of VCs 2
Buffer size per VC 8 flits

Number of pipeline stages 4

B. Path Lengths

In this evaluation, the maximum degrees are set to 16 for
64 nodes and 32 for 256 nodes. The number of VCs is fixed
to 2. In a similar way to the previous evaluation, 10 random
topologies are generated to evaluate the average values of the
following three metrics.

• Maximum path length.
• Average path length.
• Stretch Factor, which denotes the maximum factor of the

path lengths for all (s, d)-pairs.
The maximum and average path lengths are divided by those
of the shortest path length to obtain the normalized values.

For 64 nodes, Fig. 14 shows that the normalized values
get close or equal to one when the degrees become large.
Moreover, the networks with the small dimension can reduce
the values. For the 2-dimensional networks, the shortest path
routing can be achieved with 2 VCs in the case of deg(G)
≥ 10. On the other hand, for the 3-dimensional networks, the
normalized value only of the maximum can be equal to one
in the case of deg(G) ≥ 13. Although the increasing rate in
the average is only 3 % for deg(G) = 6, the value of the SF
does not fall below the value of 1.5.

Similarly, for 256 nodes, the 2-dimensional networks can
achieve the shortest path routing in the case of deg(G) ≥ 17,
while the networks with larger dimensions cannot achieve,
as shown in Fig. 15. Nonetheless, the 3- and 4-dimensional
networks can suppress the increase rates in the average by
1.6 % and 3.3 %, respectively.

In summary, the configuration of the routing method can be
varied depending on the given network or the performance to
be achieved. A small-degree network with a small dimension
can reduce the number of required VCs with the modestly
small average path length. Moreover, a large-degree network
with a small dimension has the possibility of achieving the
shortest path routing, while that with a large dimension can
be implemented with the smaller number of VCs.

C. Network Simulation

A cycle-accurate network simulator Booksim [24] is used
for evaluation. Network parameters for the simulation are
shown in Tab. I. In this evaluation, the following three routing
methods are compared.

• HiRy: In this section, the legend HiRy denotes the im-
plemented routing method described in Sec. IV.

• LASH-TOR [20]: This method splits a path for each
(s, d)-pair into sub-paths that are assigned to multiple
VCs. In this work, we assume that this method can
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(b) Transpose traffic.
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(c) Shuffle traffic.
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Fig. 16: Network performance for 64 nodes.
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Fig. 17: Network performance for 256 nodes.

achieve deterministic shortest path routing using tran-
sitions among multiple VCs. The routing function is
implemented as R : N × N → C × V that returns the
physical output channel cout and an index of the virtual
channel vout for the given (s, d)-pair.

• Duato’s protocol [18]: This method can achieve mini-
mal adaptive routing with non-minimal escape paths by
utilizing multiple VCs. As the escape paths, we adopt
the up*/down* routing [17] with the spanning trees
optimization method [25].

The degrees of networks are set to 6 for 64 nodes and 13
for 256 nodes. These values are derived from the minimal
numbers of degrees that LASH-TOR can achieve the shortest
path routing with 2 VCs for the networks with. The simulation
is performed under uniform, transpose, shuffle, and reverse
traffics [26] for 64 and 256 nodes, as shown in Fig. 16 and
17, respectively.

For 64 nodes, the saturation throughput of HiRy with
dimension n = 3 is reduced by 4.5 % compared to that of
Duato’s protocol in the uniform traffic, as shown in Fig. 16a.
The similar reduction can be seen in the other traffics except
for the shuffle traffic. Additionally, the latency of HiRy with
dimension n = 3 is increased by 0.3 % compared to that
of LASH-TOR. These results stem from the prohibited turns,
which induce both the partial adaptivity in routing packets
and the non-minimal paths for some (s, d)-pairs. On the other
hand, the saturation throughput of HiRy with n = 2 and
n = 3 is both larger than that of LASH-TOR in most of the
traffics. This is because LASH-TOR cannot use the alternative
paths to reduce congestion, while HiRy can use them by
choosing the multiple paths adaptively. In this evaluation,
HiRy can increase the saturation throughput by up to 43.2 %.

Moreover, HiRy reduces the latency by up to 2.5 % compared
to Duato’s protocol. This is because Duato’s protocol utilizes
non-minimal escape paths even when the traffic load is low,
which leads to the increased path lengths. By contrast, HiRy
achieves the shortest paths for most of the (s, d)-pairs in the
same condition.

For 256 nodes, HiRy can improve the performance es-
pecially in the synthetic traffic patterns. it can increase the
saturation throughput by 138 % in the reverse traffic compared
to LASH-TOR, as shown in Fig. 17d. Moreover, it can reduce
the latency by up to 2.9 % in the shuffle traffic compared to
Duato’s protocol, as shown in Fig. 17c.

In summary, the implemented routing method based on
HiRy can achieve the network performance comparable to or
better than the conventional routing methods for completely ir-
regular networks. It can achieve the high saturation throughput
by reducing the number of prohibited turns. Moreover, it can
achieve the low latency by using the shortest paths in routing
most of the packets in the traffics.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose HiRy, the theorem for designing
topology-agnostic deadlock-free routing, and provide a feasi-
ble implementation of an adaptive routing method for arbitrary
networks based on HiRy. HiRy is developed from EbDa, the
generalization of the turn model. We advance the theorems
by introducing the concept of regions that define continuous
directions of channels for arbitrary networks. Moreover, the
implemented routing method based on HiRy can increase
the number of permitted paths and thus can improve the
network performance. To support all source-and-destination



pairs reachable and to reduce the average path length, a
heuristic approach is introduced.

Experimental results show that the routing method based on
HiRy can be implemented with only one VC for each physical
channel for a 256-node random topology with the degree of
22. Moreover, for a 256-node random topology with the degree
of 17, the method can achieve the shortest path routing with
two VCs for each physical channel. The results from the
network simulation show that it can increase the throughput
by up to 138 % compared to LASH-TOR that is one of
the deterministic minimal routing methods. Furthermore, it
can reduce the latency by up to 2.9 % compared to Duato’s
protocol that is one of the fully adaptive routing methods.

As a future work, we will focus on developing a new
methodology to find the appropriate dimension n for the given
network and the number of VCs. Although the dimension n
is given for the routing algorithm in this work, the choice of
the dimension significantly influences the minimum number
of required VCs or the resulted path lengths. We believe that
there is still room for more effective utilization of the proposed
theorem HiRy.
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