HiRy: An Advanced Theory on Design of Deadlock-free Adaptive Routing for Arbitrary Topologies

2017/12/17

Ryuta Kawano	(Keio Univ., Japan)
Ryota Yasudo	(Keio Univ., Japan)
Hiroki Matsutani	(Keio Univ., Japan)
Michihiro Koibuchi	(NII, Japan)
Hideharu Amano	(Keio Univ., Japan)

Outline

- Low-latency Network Topologies for HPC systems
- Conventional Deadlock-free Routing Methods
- •EbDa A Generalized Theorem to Design Adaptive Routing for *Mesh and Torus*
- •**HiRy** An Advanced Theorem to Design Adaptive Routing for *Arbitrary Topologies*
- Evaluation by Network Simulation
- Conclusion

Subject: Inter-switch Networks for HPC Systems

- •Network topologies are determined based on the required performance and scalability.
- •Fat-tree, Torus, Dragonfly [1] are widely used for HPC systems.

Low-latency Irregular Topologies [2,3] for HPC systems

Inter-Switch
Irregular Topology

Reduction of # of hops with randomized links

- [2] M. Koibuchi et al.: "A Case for Random Shortcut Topologies for HPC Interconnects", ISCA'12.
- [3] H. Yang et al.: "Dodec: Random-Link, Low-Radix On-Chip Networks", MICRO'14.

Average Shortest Path Hops

Outline

- Low-latency Network Topologies for HPC systems
- Conventional Deadlock-free Routing Methods
- •EbDa A Generalized Theorem to Design Adaptive Routing for *Mesh and Torus*
- •**HiRy** An Advanced Theorem to Design Adaptive Routing for *Arbitrary Topologies*
- Evaluation by Network Simulation
- Conclusion

Challenge: Deadlock-free Routing

- Routing methods for <u>irregular topologies</u> have to support **deadlock-freedom** while
 - reducing the # of hops to achieve the low latency.
 - making alternative paths available to avoid the congestion.
- Conventional topology-independent routing methods for irregular topologies
 - •LASH-TOR
 - Duato's protocol

LASH-TOR [4]

- Layered virtual networks generated with multiple Virtual Channels (VCs)
 - Permitting transitions to achieve minimal routing
- O: Minimal paths,
 - **×: Alternative paths**

[4] T. Skeie, O. Lysne, J. Flich, P. Lopez, A. Robles and J. Duato: "LASH-TOR: A Generic Transition-Oriented Routing Algorithm", ICPADS'04.

Duato's Protocol [5]

- Layered virtual networks generated with multiple Virtual Channels (VCs) as LASH-TOR
- Minimal routing on a virtual network and non-minimal and deadlock-free routing on another virtual network
- ∴: Minimal paths,
 - : Alternative paths
 - Non-minimal routing on high load

[5] F. Silla and J. Duato: "Improving the Efficiency of Adaptive Routing in Networks with Irregular Topology", HiPC'97.

Comparison of Topology-independent Routing Methods

	LASH-TOR	Duato's
Minimal Paths	\bigcirc	\triangle
Alternative Paths	×	0

 Challenge: Designing routing methods achieving minimal paths and alternative paths for irregular networks

Outline

- Low-latency Network Topologies for HPC systems
- Conventional Deadlock-free Routing Methods
- EbDa A Generalized Theorem to Design
 Adaptive Routing for Mesh and Torus
- •**HiRy** An Advanced Theorem to Design Adaptive Routing for *Arbitrary Topologies*
- Evaluation by Network Simulation
- Conclusion

Turn Model

- Routing theorem
 for Mesh and Torus
 - prohibiting a part of turns to avoid loops

- Example: West-first routing
 - West channels are available before using {North East, South} channels.
- O: Minimal paths,
 - : Alternative paths

EbDa [6] - Generalized Theorems of the Turn Model

- Available turns on West-first routing are illustrated by arrows in the left figure.
 - The directions available arbitrarily and repeatedly can be arranged into a group called a **partition** in EbDa.
- •A **transition** between partitions can be illustrated in the right figure.

[6] M. Ebrahimi et al: " EbDa: A New Theory on Design and Verification of Deadlock-free Interconnection Networks", ISCA'17.

Deadlock-free Routing in EbDa

- An intuitive proof for deadlockfreedom
 - An example of a routed path in the bottom-right figure

Deadlock-free Routing in EbDa

- An intuitive proof for deadlockfreedom
 - An example of a routed path in the bottom-right figure
 - West channels available before the transition
 - The uni-directional transition can avoid loops among partitions.

Deadlock-free Routing in EbDa

- An intuitive proof for deadlockfreedom
 - An example of a routed path in the bottom-right figure
 - West channels available before the transition
 - The uni-directional transition can avoid loops among partitions.
 - After the transition, {North, East, South} channels are available.
 - Packets cannot cause loops because they have to move along the eastern direction monotonically.

Outline

- Low-latency Network Topologies for HPC systems
- Conventional Deadlock-free Routing Methods
- •EbDa A Generalized Theorem to Design Adaptive Routing for *Mesh and Torus*
- HiRy An Advanced Theorem to Design
 Adaptive Routing for Arbitrary Topologies
- Evaluation by Network Simulation
- Conclusion

Proposal: Extention of the EbDa Theorems for *Arbitrary Networks* (≒ *Irregular NWs*)

- •Grouping channels based on their monotonic directions including diagonal ones
 - An example in the bottom figures
 - Partition1: North channels
 - Partition2: South channels

Design of Routing based on the Proposed Theory

- An example of routed paths (the right figure)
 - •The channels in Partition 1 available before those in Partition 2
 - Packets can avoid loops because they have to move monotonically in each partition.
 - As the turn model, congestion can be avoided by alternative paths.

Other Partitions Derived from the Different Monotonic Directions

- Partitions can be generated for arbitrary monotonic directions.
 - An example in the bottom figures

Partition1: West channels

Partition2: East channels

Virtual networks
 generated with
 multiple Virtual Channels
 (VCs) as LASH-TOR and
 Duato's protocol

(# of VC = 2)

Virtual NW 2

- Virtual networks
 generated with
 multiple Virtual Channels
 (VCs) as LASH-TOR and
 Duato's protocol
 - Partitions generated in each virtual Network

(# of VC = 2)

Virtual NW 1

Virtual NW 2

Virtual networks
 generated with
 multiple Virtual Channels
 (VCs) as LASH-TOR and
 Duato's protocol

(# of VC = 2)

Virtual NW 1

Virtual NW 2

- Partitions generated in each virtual Network
- The order of the partitions are sorted to reduce the average path hops.

Virtual networks
 generated with
 multiple Virtual Channels
 (VCs) as LASH-TOR and
 Duato's protocol

(# of VC = 2)

Virtual NW 1

Virtual NW 2

- Partitions generated in each virtual Network
- The order of the partitions are sorted to reduce the average path hops.

Partition 1

Outline

- Low-latency Network Topologies for HPC systems
- Conventional Deadlock-free Routing Methods
- •EbDa A Generalized Theorem to Design Adaptive Routing for *Mesh and Torus*
- HiRy An Advanced Theorem to Design Adaptive Routing for Arbitrary Topologies
- Evaluation by Network Simulation
- Conclusion

Network Simulation Environment

- Booksim simulator [7]
- Evaluating
 - LASH-TOR
 - Duato's protocol
 - up*/down* routing for nonminimal deadlock-free paths
 - HiRy-based implementation
 - # of dimensions = 2, 3, 4
- Applying 4 traffics
 - Uniform, Transpose,
 Reverse, Shuffle

Topology and simulation parameters

NW topology	Random regular topology
# of nodes (SWs)	256
Degree (# of ports)	13 (required for LASH-TOR)
Simulation period	100,000 cycles
Packet size	1 flit
# of VCs	2
Buffer size / VC	8 flits
# of pipeline stages	4

[7] N. Jiang et al.: "A Detailed and Flexible Cycle-Accurate Network-on-Chip Simulator," ISPASS'13.

NW Simulation Results (256 nodes)

- Improving the throughput with alternative paths by up to **138%** compared with LASH-TOR
- Reducing the latency with minimal paths by up to 2.9% compared with Duato's protocol

Conclusions

- HiRy, a theory to design deadlock-free routing with the low latency and the high throughput for irregular networks
 - Extention of the EbDa theorems, generalization of the turn model
- An Implementation of the routing method based on HiRy
 - •Improving the throughput by up to **138%** compared with LASH-TOR
 - Reducing the latency by up to 2.9% compared with Duato's protocol