# Order/Radix Problem: Towards Low End-to-End Latency Interconnection Networks

**<u>Ryota Yasudo</u><sup>1</sup>**, Michihiro Koibuchi<sup>2</sup>, Koji Nakano<sup>3</sup>, Hiroki Matsutani<sup>1</sup>, and Hideharu Amano<sup>1</sup>

<sup>1</sup>Keio University, Japan
<sup>2</sup>National Institute of Informatics, Japan
<sup>3</sup>Hiroshima University, Japan

Presentation at International Conference on Parallel Processing 2017 on 16 August, 2017 @ Bristol, United Kingdom

# **Graph is everywhere**



# An interconnection network is also a graph



#### **Important topological properties for interconnection networks**

3



## **Classical problem: The Degree/Diameter Problem**

## **Optimize (maximize):**



 Combinatorics
 Summarised in Combinatorics Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki

 Image: Combinatorics
 Wiki</td

# The Moore graph (optimum graph)

 $\Delta$ : Degree, D: Diameter

ex) 
$$\Delta = 3$$
  
D
$$= 3$$

$$\Delta = 3$$

Edward F. Moore (1925-2003)

**Upper bound** on the order (called the *Moore bound*):



## **Shortcoming of the Degree/Diameter Problem**

## **Optimize (maximize):**



### Summarised in Combinatorics Wiki

http://combinatoricswiki.org/wiki/The\_Degree/Diameter\_Problem

# **The Order/Degree Problem (ODP)**

## **Optimize (minimize):**



# Mapping???



 $\bullet$ 

- But <u># of switches</u> are NOT essential •
- - Ordinary graph ignores <u># of hosts</u>!
  - <u># of hosts</u> should be fixed



Network consists of switches and hosts

# A host-switch graph



### **Our Goal:**

**To minimise** *host-to-host average shortest path length* (*h-ASPL*)

# Let's connect n hosts



# In practical, however, *radix* (# of ports of a switch) is limited

# In practical situations, Order $\gg$ Radix



## Designing high-radix switch requires high cost, so radix is limited

# The Order/Radix Problem (ORP)

## **Optimize (minimize):**



# The Order/Radix Problem (ORP)

### **Optimize (minimize):**



## **Important questions:**

Q1. How many switches should be used?

Q2. Should hosts be connected <u>uniformly</u>, or <u>non-uniformly?</u>

# **Existing technique for ODP: 2-opt**



# Swing operation



# each switch always changes!

# 2-neighbour swing operation





# Again, let's consider the Moore graph

 Lower bound on the h-ASPL can be calculated by the Moore graph consisting of only switches <u>if we</u> <u>assume each switch has fixed number of</u> <u>hosts.</u>

Edward F. Moore (1925-2003)



# of hosts must be natural number

# The continuous Moore bound

Lower bound on the h-ASPL can be calculated by the Moore graph consisting of only switches <u>if we</u> assume each switch has fixed number of <u>hosts.</u>

Edward F. Moore (1925-2003)



# of hosts does NOT need to be natural number







# **Answers to the questions**

Important questions:

Q1. How many switches should be used?

**Q2.** Should hosts be connected uniformly, or NON-uniformly?

**Empirical answers:** 

A1. The number such that <u>the continuous</u> <u>Moore bound becomes minimum</u>.

A2. Hosts should be connected <u>uniformly</u>.





# **Comparison with existing topologies**

- The torus, the dragonfly, and the fat-tree
- Picked up from interconnection networks used in supercomputers ranked in TOP500

#### TOP 10 Sites for June 2017

For more information about the sites and systems in the list, click on the links or view the complete list.

1-100 101-200 201-300 301-400 401-500

| Rank | System                                                                                                                                                                            | Cores      | Rmax<br>(TFlop/s) | Rpeak<br>(TFlop/s) | Power<br>(kW) |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|--------------------|---------------|
| 1    | Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz,<br>Sunway , NRCPC<br>National Supercomputing Center in Wuxi<br>China                                                 | 10,649,600 | 93,014.6          | 125,435.9          | 15,371        |
| 2    | Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C<br>2.200GHz, TH Express-2, Intel Xeon Phi 31S1P , NUDT<br>National Super Computer Center in Guangzhou<br>China | 3,120,000  | 33,862.7          | 54,902.4           | 17,808        |
| 3    | Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect ,<br>NVIDIA Tesla P100 , Cray Inc.<br>Swiss National Supercomputing Centre (CSCS)<br>Switzerland             | 361,760    | 19,590.0          | 25,326.3           | 2,272         |

### https://www.top500.org/lists/2017/06/

# **Overview of comparison**

- Performance, Power consumption, Cost breakdowns (including switch and cable costs)
- We construct a topology by as optimised host-switch graph with the same order and radix for each existing topology.
- Based on two experiments

# **Experiment 1: SimGrid simulation**

- SimGrid discrete event simulator
  - SMPI simulates unmodified MPI applications
  - NAS parallel benchmark
- Networks with 1024 hosts
  - 5-ary 3-torus
  - Dragonfly with diameter 5
  - 16-ary fat-tree

# **Experiment 2: Modelling**

- Models of Mellanox InfiniBand switches/cables.
  - As with [Besta and Hoefler, 2014]

[Besta and Hoefler 2014] "Slim fly: A cost effective low-diameter network topology," SC, Nov. 2014, pp. 348–359.

• Based on 60cm x 210 cm floorplan

# **Performance comparison with Torus**





### Power consumption

### Cost breakdowns



1600000 Cable

# **Performance comparison with Dragonfly**





### Power consumption

### Cost breakdowns



# **Performance comparison with Fat-tree**







# Conclusions

- A host-switch graph
- The order/radix problem
- Our solution:
  - Reducing h-ASPL with 2-neighbour operation
  - Approximation of the optimal number of switches by using the continuous Moore bound
- Our topologies attain 12%-84% faster MPI execution with lower power/costs