
1

Time-multiplexed Execution on the
Dynamically Reconfigurable Processor

-A Performance/Cost Evaluation-

Yohei Hasegawa, Shohei Abe,
Katsuaki Deguchi, Masayasu Suzuki,

and Hideharu Amano

Graduate School of Science and Technology, Keio
University, Japan

drp@am.ics.keio.ac.jp

2

Problem of System-on-a-Chip (SoC)

CPU

I/O

ASIC

A/D

RAM

System-on-a-Chip

LSI chips for various applications
Cellular Phones
Network Controllers
Mobile Terminals

The performance is depending on
Application Specific Hardware
Various new techniques must be
implemented (JPEG2000, AES, Turbo code...)
Design cost for Application Specific
Hardware becomes great!

Powerful but flexible structure is
required!

3

Dynamically Reconfigurable Processor
Coarse grain cell architecture
Dynamic reconfiguration

The hardware context is dynamically changed often in one clock
= Multi-Context Functionality
Reducing the cost and improving area efficiency

High level design entry and functional synthesis

M
ul

tip
le

xe
r

SRAM slots
n

Logic cells

1

2

Input data

Output data

Logic cellsLogic cells Context

4

NEC’s DRP -Architecture Overview-

Multi-Context Device

Array of byte-oriented
Processing Elements(PEs)

Fully programmable inter-PE
wiring resources

A simple sequencer: State
Transtion Controller (STC)

Array of configurable data
memories (VMEM, HMEM)

HMEM

PE

HMEM HMEM HMEM

PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE
PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

State Transition Controller

PE PE PE PE PE PE PE PE
PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE
HMEM HMEM HMEM HMEM

VMEM

VMEM
VMEM

VMEM

VMEM
VMEM

VMEM

VMEM

VMEM ctrl
VMEM ctrl

VMEM

VMEM
VMEM

VMEM

VMEM
VMEM

VMEM

VMEM

VMEM ctrl
VMEM ctrl

Tile = DRP Core

5

Processing Element (PE)
ALU: arithmetic/logic
operation
DMU: byte select, shift,
mask, constant generation,
etc.
Byte Flip-Flop/Register
File
An instruction dictates
ALU/DMU operation and
PE interconnection
Instruction Pointer is
provided from STC

...

D
M

U
AL

U

In
st

ru
ct

io
ns

Fl
ip

 F
lo

p
Re

gi
st

er
 F

ile

IP

Flag Output

Flag Input Data BusFlag Bus

D
at

a
O

ut
pu

t
8b

it

D
at

a
In

pu
t

8b
it

x
2

6

DRP-1: A Prototype Chip
DRP Core with 4x2 Tiles
(512PEs)

VMEM x 80 (160Kbit)

HMEM x 32 (2Mbit)

32bit Multiplier x 8
PCI Interface

External SRAM Controller

Central State Transition
Controller (CSTC)

MUL MUL MUL MULMC

MUL MUL MUL MULPCICPLL PLL

Data

Ctrl

Program

Test

PLL

CLK

PLL

CLK

CLK CLKPCI IF

To SDRAM/
SRAM/CAM

CSTC

Tile

7

DRP-1 Evaluation Board

One DRP-1 Core
I/O Controller (Xilinx FPGA)
External SRAM (4MByte)
PCI Connection to Host PC via 64bit, 33MHz PCI Bus
Local PCI Interface is used to configure DRP-1

Xilinx FPGA
DRP-1 Chip

Host PCI I/F

8

DRP Compiler
Compiling C source code
into DRP object code

Behavaioral Description
Language (BDL)

High level synthesis: generates
finite state machines (FSMs) and
associated datapath planes

The ASIC behavioral design tool:
Cyber is modified and used.

Mapper: maps FSMs and datapath
plane to STC and PEs respectively

Place & Router: physically locates
the PEs and memories and mutually
connects them

C Source Code

High Level Synthesis

FSM Datapath

Technology Mapper

Place & Router

Code Generation

Object Code

9

BDL Code Example
mem(0:16) d0[8], d1[8], d2[8], d3[8], d4[8], d5[8], d6[8], d7[8];
void row() {

ter(0:16) SUMT0, SUMT1, SUMT2, SUMT3;
reg(0:16) SUB0, SUB1, SUB2, SUB3;
ter(0:16) z0, z1, z2, z3, z4, z5, z6, z7;
reg(0:8) i=0;
$
for(; i < 8; i++) {
d0[i], d1[i], d2[i], d3[i], d4[i], d5[i], d6[i], d7[i];
$
SUMT0 = d0[i] + d7[i]; SUB0 = d0[i] - d7[i];
SUMT1 = d1[i] + d6[i]; SUB1 = d1[i] - d6[i];

.
z0 = A * SUMT0 + A * SUMT1 + A * SUMT2 + A * SUMT3;
z2 = B * SUMT0 + C * SUMT1 – C * SUMT2 – B * SUMT3;

.
$
z1 = D * SUB0 + E * SUB1 * F * SUB2 + G * SUB3;
z3 = E * SUB0 – G * SUB1 – D * SUB2 – F * SUB3;

.
$

}

16bit memory:
Allocated to VMEM

Terminals & Registers
Delimiter for the state/context

Memory Access for
giving an address

Terminals must be used In
the assigned state/context

Registers can be used in
the next states/contexts

10

Design Examples and Evaluation

Target DSP is Texas Instruments TMS320C6713
225MHz VLIW Floating Point DSP
4KB data cache and instruction cache
256KB L2 cache
Compiled with Code Composer StudioTM 2.20.05

364.0Mbit/s

329Mbit/s

173.5Mbit/s

2,802 FFT/s

Throughput
On DRP-1

Throughput
On DSP

Frequency
[MHz]Max PEsNumber of

ContextApplication

16.9Mbit/s56.91296AES-CBC

13.221015DWT

267Mbit/s3622216IMDCT

66.0Mbit/s15MHz44016DCT

383 FFT/s335914FFT

11

Time-Multiplexed Execution
A single task can be executed with multiple
contexts, and can improve the area efficiency

No quantitative evaluation about the impact of
performance and cost of time-multiplexed execution

We evaluate on some real stream applications on DRP-1

Serial step in an algorithm:
Data is read out from distributed memory modules and/or
registers
Required processing is done with multiple PEs
The results are stored into the distributed memory modules
and/or registers

Parallelism Diagram = Required number of PEs in each serial step

However

12

Parallelism on each step DCT in JPEG

0
100
200
300
400
500
600
700
800
900

1 4 7 10 13 16 19 22 25 28 31

Re
qu

ire
d

nu
m

be
r o

f P
Es

Input
8 times

row
8 times

column
4 times

column
epilogue

output
8 times

Step

13

Context division
With the time-multiplexed
execution,
the step is increased, but
not so much, since the required PEs
are various in each step.

STEPi

PEi

Context size

2 ×Context size

PEsize

1….. Smax
1….. Ssize

Time multiplexed
execution with a certain
context size

14

Analysis of Cost
Multiple Step Allocation

Multiple steps are assigned in one context.
Frequency of context switch is reduced.
More PEs are used in a context.

Required Number of Context
The number of context decreases if each context size
increases.
Loss of the context division and integration becomes large
because of imbalanced size and number of context

15

Analysis of Performance
Applications:

DCT for JPEG, IMDCT for MP3, AES-CBC, DWT for
JPEG2000

Evaluation Summary:

The number of steps increases 20%-40% when the
context size becomes 1/2.

The critical path is reduced 2%-5% when the context
size becomes 1/2.

The performance/cost is improved 4.5-14 times with
time-multiplexing execution.

16

Context Size vs the Number of Context

Required PEs

Required Contexts vs.
Context Size (DCT)

The overhead caused
by context division is

minimized

As the context size
increases, the number
of contexts decreases

17

Summary
Dynamically Reconfigurable Processor was
introduced

Coarse Grain Structure High Performance

Dynamic Reconfiguration High Area Efficiency

C-Level Programming Environment

We evaluated the impact of time-multiplexed
execution for some real applications on NEC’s
DRP-1

18

Demonstration: DRP Compile Tools

Musketeer: An Integrated Development
Environment for DRP

